metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: LightGBM_without_hospital_number_01.pkl
widget:
structuredData:
abdomen:
- distend_small
- distend_small
- distend_large
abdominal_distention:
- none
- none
- moderate
abdomo_appearance:
- serosanguious
- cloudy
- serosanguious
abdomo_protein:
- 4.1
- 4.3
- 2
age:
- adult
- adult
- adult
capillary_refill_time:
- less_3_sec
- less_3_sec
- more_3_sec
cp_data:
- 'yes'
- 'yes'
- 'no'
lesion_1:
- 7209
- 2112
- 5400
lesion_2:
- 0
- 0
- 0
lesion_3:
- 0
- 0
- 0
mucous_membrane:
- bright_pink
- bright_pink
- dark_cyanotic
nasogastric_reflux:
- none
- none
- more_1_liter
nasogastric_reflux_ph:
- 7
- 3.5
- 2
nasogastric_tube:
- slight
- none
- significant
packed_cell_volume:
- 37
- 44
- 65
pain:
- depressed
- mild_pain
- extreme_pain
peripheral_pulse:
- normal
- normal
- reduced
peristalsis:
- hypermotile
- hypomotile
- absent
pulse:
- 84
- 66
- 72
rectal_exam_feces:
- absent
- decreased
- absent
rectal_temp:
- 39
- 38.5
- 37.3
respiratory_rate:
- 24
- 21
- 30
surgery:
- 'yes'
- 'yes'
- 'yes'
surgical_lesion:
- 'yes'
- 'yes'
- 'yes'
temp_of_extremities:
- cool
- normal
- cool
total_protein:
- 6.5
- 7.6
- 13
Model description
This is a LightGBM
model trained on horse health outcome data from Kaggle.
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('preprocessor', ColumnTransformer(remainder='passthrough', transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']), ('cat', Pipeline(steps=[('imputer', SimpleI...='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data'])])), ('classifier', LGBMClassifier(max_depth=3))] |
verbose | False |
preprocessor | ColumnTransformer(remainder='passthrough', transformers=[('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']), ('cat', Pipeline(steps=[('imputer', SimpleI...='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data'])]) |
classifier | LGBMClassifier(max_depth=3) |
preprocessor__n_jobs | |
preprocessor__remainder | passthrough |
preprocessor__sparse_threshold | 0.3 |
preprocessor__transformer_weights | |
preprocessor__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]), ['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']), ('cat', Pipeline(steps=[('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data'])] |
preprocessor__verbose | False |
preprocessor__verbose_feature_names_out | True |
preprocessor__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())]) |
preprocessor__cat | Pipeline(steps=[('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
preprocessor__num__memory | |
preprocessor__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())] |
preprocessor__num__verbose | False |
preprocessor__num__imputer | SimpleImputer(strategy='median') |
preprocessor__num__scaler | StandardScaler() |
preprocessor__num__imputer__add_indicator | False |
preprocessor__num__imputer__copy | True |
preprocessor__num__imputer__fill_value | |
preprocessor__num__imputer__keep_empty_features | False |
preprocessor__num__imputer__missing_values | nan |
preprocessor__num__imputer__strategy | median |
preprocessor__num__scaler__copy | True |
preprocessor__num__scaler__with_mean | True |
preprocessor__num__scaler__with_std | True |
preprocessor__cat__memory | |
preprocessor__cat__steps | [('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))] |
preprocessor__cat__verbose | False |
preprocessor__cat__imputer | SimpleImputer(fill_value='missing', strategy='constant') |
preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
preprocessor__cat__imputer__add_indicator | False |
preprocessor__cat__imputer__copy | True |
preprocessor__cat__imputer__fill_value | missing |
preprocessor__cat__imputer__keep_empty_features | False |
preprocessor__cat__imputer__missing_values | nan |
preprocessor__cat__imputer__strategy | constant |
preprocessor__cat__onehot__categories | auto |
preprocessor__cat__onehot__drop | |
preprocessor__cat__onehot__dtype | <class 'numpy.float64'> |
preprocessor__cat__onehot__feature_name_combiner | concat |
preprocessor__cat__onehot__handle_unknown | ignore |
preprocessor__cat__onehot__max_categories | |
preprocessor__cat__onehot__min_frequency | |
preprocessor__cat__onehot__sparse | deprecated |
preprocessor__cat__onehot__sparse_output | True |
classifier__boosting_type | gbdt |
classifier__class_weight | |
classifier__colsample_bytree | 1.0 |
classifier__importance_type | split |
classifier__learning_rate | 0.1 |
classifier__max_depth | 3 |
classifier__min_child_samples | 20 |
classifier__min_child_weight | 0.001 |
classifier__min_split_gain | 0.0 |
classifier__n_estimators | 100 |
classifier__n_jobs | |
classifier__num_leaves | 31 |
classifier__objective | |
classifier__random_state | |
classifier__reg_alpha | 0.0 |
classifier__reg_lambda | 0.0 |
classifier__subsample | 1.0 |
classifier__subsample_for_bin | 200000 |
classifier__subsample_freq | 0 |
Model Plot
Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler())]),['rectal_temp', 'pulse','respiratory_rate','nasogastric_reflux_ph','packed_cell_volume','total_protein','abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pi...OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age','temp_of_extremities','peripheral_pulse','mucous_membrane','capillary_refill_time','pain', 'peristalsis','abdominal_distention','nasogastric_tube','nasogastric_reflux','rectal_exam_feces','abdomen','abdomo_appearance','surgical_lesion','cp_data'])])),('classifier', LGBMClassifier(max_depth=3))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('preprocessor',ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler())]),['rectal_temp', 'pulse','respiratory_rate','nasogastric_reflux_ph','packed_cell_volume','total_protein','abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pi...OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age','temp_of_extremities','peripheral_pulse','mucous_membrane','capillary_refill_time','pain', 'peristalsis','abdominal_distention','nasogastric_tube','nasogastric_reflux','rectal_exam_feces','abdomen','abdomo_appearance','surgical_lesion','cp_data'])])),('classifier', LGBMClassifier(max_depth=3))])
ColumnTransformer(remainder='passthrough',transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler', StandardScaler())]),['rectal_temp', 'pulse', 'respiratory_rate','nasogastric_reflux_ph', 'packed_cell_volume','total_protein', 'abdomo_protein', 'lesion_1','lesion_2', 'lesion_3']),('cat',Pipeline(steps=[('imputer',SimpleI...='missing',strategy='constant')),('onehot',OneHotEncoder(handle_unknown='ignore'))]),['surgery', 'age', 'temp_of_extremities','peripheral_pulse', 'mucous_membrane','capillary_refill_time', 'pain','peristalsis', 'abdominal_distention','nasogastric_tube', 'nasogastric_reflux','rectal_exam_feces', 'abdomen','abdomo_appearance', 'surgical_lesion','cp_data'])])
['rectal_temp', 'pulse', 'respiratory_rate', 'nasogastric_reflux_ph', 'packed_cell_volume', 'total_protein', 'abdomo_protein', 'lesion_1', 'lesion_2', 'lesion_3']
SimpleImputer(strategy='median')
StandardScaler()
['surgery', 'age', 'temp_of_extremities', 'peripheral_pulse', 'mucous_membrane', 'capillary_refill_time', 'pain', 'peristalsis', 'abdominal_distention', 'nasogastric_tube', 'nasogastric_reflux', 'rectal_exam_feces', 'abdomen', 'abdomo_appearance', 'surgical_lesion', 'cp_data']
SimpleImputer(fill_value='missing', strategy='constant')
OneHotEncoder(handle_unknown='ignore')
[]
passthrough
LGBMClassifier(max_depth=3)
Evaluation Results
Metric | Value |
---|---|
accuracy | 0.740891 |
f1 score | 0.740891 |
Confusion Matrix
Permutation Importance
How to Get Started with the Model
[More Information Needed]
Model Card Authors
kmposkid
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]