cs_m2m_2e-5_50_v0.2 / README.md
kmok1's picture
End of training
95fa571 verified
---
license: mit
base_model: facebook/m2m100_1.2B
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: cs_m2m_2e-5_50_v0.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cs_m2m_2e-5_50_v0.2
This model is a fine-tuned version of [facebook/m2m100_1.2B](https://huggingface.co/facebook/m2m100_1.2B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3546
- Bleu: 46.5499
- Gen Len: 19.8571
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.0 | 1.0 | 6 | 2.4739 | 49.3833 | 19.8571 |
| 0.0 | 2.0 | 12 | 2.4967 | 47.4622 | 20.7143 |
| 0.0087 | 3.0 | 18 | 2.6016 | 47.8384 | 20.9524 |
| 0.0 | 4.0 | 24 | 2.6004 | 49.8858 | 19.9048 |
| 0.0825 | 5.0 | 30 | 2.4731 | 50.7434 | 19.9524 |
| 0.0 | 6.0 | 36 | 2.4229 | 45.2602 | 20.7619 |
| 0.0002 | 7.0 | 42 | 2.4148 | 45.5274 | 20.5238 |
| 0.0001 | 8.0 | 48 | 2.3583 | 47.4096 | 19.9524 |
| 0.0 | 9.0 | 54 | 2.3559 | 49.1212 | 20.1905 |
| 0.0 | 10.0 | 60 | 2.3610 | 47.0296 | 20.0952 |
| 0.0001 | 11.0 | 66 | 2.3423 | 47.2022 | 19.8571 |
| 0.0002 | 12.0 | 72 | 2.2938 | 48.5473 | 20.0952 |
| 0.0 | 13.0 | 78 | 2.2591 | 49.6382 | 19.4762 |
| 0.0001 | 14.0 | 84 | 2.2492 | 49.5102 | 19.6667 |
| 0.0001 | 15.0 | 90 | 2.2740 | 49.1707 | 19.6667 |
| 0.0 | 16.0 | 96 | 2.2876 | 48.9631 | 19.3333 |
| 0.0023 | 17.0 | 102 | 2.2842 | 48.7639 | 19.6667 |
| 0.0001 | 18.0 | 108 | 2.2830 | 45.9993 | 19.5238 |
| 0.0 | 19.0 | 114 | 2.2872 | 49.1391 | 19.7619 |
| 0.0 | 20.0 | 120 | 2.2893 | 49.1623 | 19.8095 |
| 0.0 | 21.0 | 126 | 2.2948 | 48.5803 | 20.0 |
| 0.0 | 22.0 | 132 | 2.3048 | 48.9732 | 20.0476 |
| 0.0 | 23.0 | 138 | 2.3114 | 49.1156 | 19.9524 |
| 0.0 | 24.0 | 144 | 2.3169 | 49.1156 | 19.9524 |
| 0.0 | 25.0 | 150 | 2.3202 | 48.4435 | 20.0 |
| 0.0 | 26.0 | 156 | 2.3227 | 48.4435 | 20.0 |
| 0.0 | 27.0 | 162 | 2.3236 | 48.4435 | 20.0 |
| 0.0 | 28.0 | 168 | 2.3244 | 48.4435 | 20.0 |
| 0.0 | 29.0 | 174 | 2.3268 | 48.4435 | 20.0 |
| 0.0002 | 30.0 | 180 | 2.3296 | 45.9582 | 19.8571 |
| 0.0 | 31.0 | 186 | 2.3319 | 45.9582 | 19.8571 |
| 0.0 | 32.0 | 192 | 2.3338 | 45.9582 | 19.8571 |
| 0.0 | 33.0 | 198 | 2.3401 | 46.8428 | 19.8571 |
| 0.0 | 34.0 | 204 | 2.3473 | 46.586 | 19.8095 |
| 0.0001 | 35.0 | 210 | 2.3513 | 46.586 | 19.8095 |
| 0.0 | 36.0 | 216 | 2.3539 | 48.1767 | 20.0476 |
| 0.0 | 37.0 | 222 | 2.3554 | 48.1966 | 19.9048 |
| 0.0 | 38.0 | 228 | 2.3563 | 48.1966 | 19.9048 |
| 0.0 | 39.0 | 234 | 2.3563 | 48.1966 | 19.9048 |
| 0.0 | 40.0 | 240 | 2.3550 | 46.5682 | 19.8095 |
| 0.0001 | 41.0 | 246 | 2.3541 | 46.5499 | 19.9524 |
| 0.0 | 42.0 | 252 | 2.3534 | 46.5499 | 19.8571 |
| 0.0001 | 43.0 | 258 | 2.3533 | 46.5499 | 19.8571 |
| 0.0 | 44.0 | 264 | 2.3533 | 46.5499 | 19.8571 |
| 0.0 | 45.0 | 270 | 2.3537 | 46.5499 | 19.8571 |
| 0.0001 | 46.0 | 276 | 2.3540 | 46.5499 | 19.8571 |
| 0.0 | 47.0 | 282 | 2.3543 | 46.5499 | 19.8571 |
| 0.0 | 48.0 | 288 | 2.3544 | 46.5499 | 19.8571 |
| 0.0 | 49.0 | 294 | 2.3545 | 46.5499 | 19.8571 |
| 0.0 | 50.0 | 300 | 2.3546 | 46.5499 | 19.8571 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2