kmewhort commited on
Commit
10b1d58
1 Parent(s): b58483e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: beit-sketch-classifier-pt-metaset
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # beit-sketch-classifier-pt-metaset
16
+
17
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6732
20
+ - Accuracy: 0.8277
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 4
44
+ - total_train_batch_size: 128
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 5
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|
54
+ | 0.8069 | 1.0 | 76608 | 0.7673 | 0.7988 |
55
+ | 0.6922 | 2.0 | 153216 | 0.6982 | 0.8159 |
56
+ | 0.6289 | 3.0 | 229824 | 0.6709 | 0.8236 |
57
+ | 0.5332 | 4.0 | 306432 | 0.6635 | 0.8271 |
58
+ | 0.4283 | 5.0 | 383040 | 0.6732 | 0.8277 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.25.1
64
+ - Pytorch 1.13.1+cu117
65
+ - Datasets 2.7.1
66
+ - Tokenizers 0.13.2