|
--- |
|
license: mit |
|
base_model: google/vivit-b-16x2-kinetics400 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vivit-b-16x2-kinetics400-finetuned-0505-original |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vivit-b-16x2-kinetics400-finetuned-0505-original |
|
|
|
This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7704 |
|
- Accuracy: 0.74 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 520 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 2.4346 | 0.1019 | 53 | 2.1892 | 0.18 | |
|
| 1.2302 | 1.1019 | 106 | 1.6488 | 0.44 | |
|
| 0.7052 | 2.1019 | 159 | 1.1180 | 0.66 | |
|
| 0.1088 | 3.1019 | 212 | 0.7580 | 0.74 | |
|
| 0.0163 | 4.1019 | 265 | 0.9034 | 0.72 | |
|
| 0.0039 | 5.1019 | 318 | 0.8373 | 0.8 | |
|
| 0.0024 | 6.1019 | 371 | 0.7717 | 0.76 | |
|
| 0.0019 | 7.1019 | 424 | 0.7680 | 0.74 | |
|
| 0.0016 | 8.1019 | 477 | 0.7709 | 0.74 | |
|
| 0.0017 | 9.0827 | 520 | 0.7704 | 0.74 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|