Model save
Browse files- README.md +35 -71
- model.safetensors +1 -1
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -61,81 +61,45 @@ The following hyperparameters were used during training:
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
-
- num_epochs:
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
70 |
-
| No log | 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.2848 | 28.8889 | 195 | 0.5970 | 0.7553 |
|
99 |
-
| 0.281 | 29.9259 | 202 | 0.4422 | 0.8191 |
|
100 |
-
| 0.281 | 30.9630 | 209 | 0.4091 | 0.8404 |
|
101 |
-
| 0.2608 | 32.0 | 216 | 0.4415 | 0.8298 |
|
102 |
-
| 0.2373 | 32.8889 | 222 | 0.3496 | 0.8617 |
|
103 |
-
| 0.2373 | 33.9259 | 229 | 0.4510 | 0.8298 |
|
104 |
-
| 0.2712 | 34.9630 | 236 | 0.4498 | 0.8404 |
|
105 |
-
| 0.2374 | 36.0 | 243 | 0.5103 | 0.8298 |
|
106 |
-
| 0.2374 | 36.8889 | 249 | 0.4311 | 0.8404 |
|
107 |
-
| 0.2471 | 37.9259 | 256 | 0.5993 | 0.8085 |
|
108 |
-
| 0.2419 | 38.9630 | 263 | 0.5649 | 0.8404 |
|
109 |
-
| 0.2511 | 40.0 | 270 | 0.5319 | 0.8298 |
|
110 |
-
| 0.2511 | 40.8889 | 276 | 0.5782 | 0.8191 |
|
111 |
-
| 0.2184 | 41.9259 | 283 | 0.5105 | 0.8404 |
|
112 |
-
| 0.2272 | 42.9630 | 290 | 0.5509 | 0.8404 |
|
113 |
-
| 0.2272 | 44.0 | 297 | 0.4216 | 0.8830 |
|
114 |
-
| 0.2162 | 44.8889 | 303 | 0.7166 | 0.7872 |
|
115 |
-
| 0.2201 | 45.9259 | 310 | 0.6365 | 0.8404 |
|
116 |
-
| 0.2201 | 46.9630 | 317 | 0.5059 | 0.8723 |
|
117 |
-
| 0.2272 | 48.0 | 324 | 0.4986 | 0.8298 |
|
118 |
-
| 0.2561 | 48.8889 | 330 | 0.5835 | 0.8617 |
|
119 |
-
| 0.2561 | 49.9259 | 337 | 0.6940 | 0.8191 |
|
120 |
-
| 0.2151 | 50.9630 | 344 | 0.5961 | 0.8723 |
|
121 |
-
| 0.2024 | 52.0 | 351 | 0.6294 | 0.8404 |
|
122 |
-
| 0.2024 | 52.8889 | 357 | 0.6847 | 0.8723 |
|
123 |
-
| 0.1881 | 53.9259 | 364 | 0.5811 | 0.8617 |
|
124 |
-
| 0.1764 | 54.9630 | 371 | 0.7194 | 0.8404 |
|
125 |
-
| 0.1764 | 56.0 | 378 | 0.4744 | 0.8723 |
|
126 |
-
| 0.1885 | 56.8889 | 384 | 0.5920 | 0.8404 |
|
127 |
-
| 0.1898 | 57.9259 | 391 | 0.4570 | 0.8830 |
|
128 |
-
| 0.1898 | 58.9630 | 398 | 0.4141 | 0.8617 |
|
129 |
-
| 0.1723 | 60.0 | 405 | 0.5443 | 0.8617 |
|
130 |
-
| 0.1816 | 60.8889 | 411 | 0.6426 | 0.8085 |
|
131 |
-
| 0.1816 | 61.9259 | 418 | 0.4732 | 0.8511 |
|
132 |
-
| 0.1688 | 62.9630 | 425 | 0.5275 | 0.8511 |
|
133 |
-
| 0.1498 | 64.0 | 432 | 0.4558 | 0.8830 |
|
134 |
|
135 |
|
136 |
### Framework versions
|
137 |
|
138 |
-
- Transformers 4.
|
139 |
-
- Pytorch 2.
|
140 |
-
- Datasets 2.19.
|
141 |
- Tokenizers 0.19.1
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8557692307692307
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.4043
|
36 |
+
- Accuracy: 0.8558
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 30
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
70 |
+
| No log | 0.9333 | 7 | 0.6743 | 0.5673 |
|
71 |
+
| 0.6763 | 2.0 | 15 | 0.6166 | 0.6923 |
|
72 |
+
| 0.635 | 2.9333 | 22 | 0.5646 | 0.7404 |
|
73 |
+
| 0.5724 | 4.0 | 30 | 0.5074 | 0.7308 |
|
74 |
+
| 0.5724 | 4.9333 | 37 | 0.4809 | 0.7692 |
|
75 |
+
| 0.527 | 6.0 | 45 | 0.4597 | 0.7692 |
|
76 |
+
| 0.5304 | 6.9333 | 52 | 0.4758 | 0.7596 |
|
77 |
+
| 0.4597 | 8.0 | 60 | 0.4343 | 0.7885 |
|
78 |
+
| 0.4597 | 8.9333 | 67 | 0.4249 | 0.7981 |
|
79 |
+
| 0.4606 | 10.0 | 75 | 0.4236 | 0.7981 |
|
80 |
+
| 0.4286 | 10.9333 | 82 | 0.4055 | 0.8462 |
|
81 |
+
| 0.3857 | 12.0 | 90 | 0.4144 | 0.8269 |
|
82 |
+
| 0.3857 | 12.9333 | 97 | 0.4294 | 0.7981 |
|
83 |
+
| 0.3801 | 14.0 | 105 | 0.4081 | 0.8462 |
|
84 |
+
| 0.3538 | 14.9333 | 112 | 0.4195 | 0.8462 |
|
85 |
+
| 0.3585 | 16.0 | 120 | 0.4069 | 0.8558 |
|
86 |
+
| 0.3585 | 16.9333 | 127 | 0.3971 | 0.8558 |
|
87 |
+
| 0.3258 | 18.0 | 135 | 0.3938 | 0.8654 |
|
88 |
+
| 0.3288 | 18.9333 | 142 | 0.3964 | 0.8462 |
|
89 |
+
| 0.3276 | 20.0 | 150 | 0.4423 | 0.8558 |
|
90 |
+
| 0.3276 | 20.9333 | 157 | 0.4067 | 0.8365 |
|
91 |
+
| 0.317 | 22.0 | 165 | 0.4179 | 0.8654 |
|
92 |
+
| 0.288 | 22.9333 | 172 | 0.3882 | 0.8558 |
|
93 |
+
| 0.2735 | 24.0 | 180 | 0.4215 | 0.8558 |
|
94 |
+
| 0.2735 | 24.9333 | 187 | 0.3972 | 0.8462 |
|
95 |
+
| 0.2805 | 26.0 | 195 | 0.3943 | 0.8558 |
|
96 |
+
| 0.2961 | 26.9333 | 202 | 0.3999 | 0.8558 |
|
97 |
+
| 0.2832 | 28.0 | 210 | 0.4043 | 0.8558 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
### Framework versions
|
101 |
|
102 |
+
- Transformers 4.41.2
|
103 |
+
- Pytorch 2.3.0+cu121
|
104 |
+
- Datasets 2.19.2
|
105 |
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110342832
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab8f13c7b584a8e93af571b13b85ab1c9441a15b929d87670b5e54bbc1d32395
|
3 |
size 110342832
|