ojasaar commited on
Commit
7e2fa42
1 Parent(s): 79dd1b6

update readme

Browse files
Files changed (2) hide show
  1. README.md +4 -0
  2. README.md~ +0 -81
README.md CHANGED
@@ -16,6 +16,10 @@ metrics:
16
  ---
17
  # T5 Base with QA + Summary + Emotion
18
 
 
 
 
 
19
  ## Description
20
 
21
  This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
 
16
  ---
17
  # T5 Base with QA + Summary + Emotion
18
 
19
+ ## Dependencies
20
+
21
+ Requires transformers>=4.0.0
22
+
23
  ## Description
24
 
25
  This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
README.md~ DELETED
@@ -1,81 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - question-answering
6
- - summarization
7
- - emotion-detection
8
- license: Apache 2.0
9
- datasets:
10
- - coqa
11
- - squad_v2
12
- - go_emotions
13
- - cnn_dailymail
14
- metrics:
15
- - f1
16
- ---
17
- # T5 Base with QA + Summary + Emotion
18
-
19
- ## Description
20
-
21
- This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
22
-
23
- It achieves a score of **F1 76.7** on the Squad 2 dev set and a score of **F1 68.5** on the CoQa dev set.
24
-
25
- Summarisation and emotion detection has not been evaluated yet.
26
-
27
- ## Usage
28
-
29
- ### Question answering
30
-
31
- ```python
32
- from transformers import T5ForConditionalGeneration, T5Tokenizer
33
- model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
34
- tokenizer = T5Tokenizer.from_pretrained("t5-base")
35
-
36
- def get_answer(question, prev_qa, context):
37
- input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
38
- input_text.append(f"q: {question}")
39
- input_text.append(f"c: {context}")
40
- input_text = " ".join(input_text)
41
- features = tokenizer([input_text], return_tensors='pt')
42
- tokens = model.generate(input_ids=features['input_ids'],
43
- attention_mask=features['attention_mask'], max_length=64)
44
- return tokenizer.decode(tokens[0], skip_special_tokens=True)
45
-
46
- print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown
47
-
48
- context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
49
-
50
- print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
51
- ```
52
-
53
- ### Summarisation
54
-
55
- ```python
56
- from transformers import T5ForConditionalGeneration, T5Tokenizer
57
- model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
58
- tokenizer = T5Tokenizer.from_pretrained("t5-base")
59
-
60
- def summary(context):
61
- input_text = f"summarize: {context}"
62
- features = tokenizer([input_text], return_tensors='pt')
63
- tokens = model.generate(input_ids=features['input_ids'],
64
- attention_mask=features['attention_mask'], max_length=64)
65
- return tokenizer.decode(tokens[0], skip_special_tokens=True)
66
- ```
67
-
68
- ### Emotion detection
69
-
70
- ```python
71
- from transformers import T5ForConditionalGeneration, T5Tokenizer
72
- model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
73
- tokenizer = T5Tokenizer.from_pretrained("t5-base")
74
-
75
- def emotion(context):
76
- input_text = f"emotion: {context}"
77
- features = tokenizer([input_text], return_tensors='pt')
78
- tokens = model.generate(input_ids=features['input_ids'],
79
- attention_mask=features['attention_mask'], max_length=64)
80
- return tokenizer.decode(tokens[0], skip_special_tokens=True)
81
- ```