update readme
Browse files- README.md +4 -0
- README.md~ +0 -81
README.md
CHANGED
@@ -16,6 +16,10 @@ metrics:
|
|
16 |
---
|
17 |
# T5 Base with QA + Summary + Emotion
|
18 |
|
|
|
|
|
|
|
|
|
19 |
## Description
|
20 |
|
21 |
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
|
|
|
16 |
---
|
17 |
# T5 Base with QA + Summary + Emotion
|
18 |
|
19 |
+
## Dependencies
|
20 |
+
|
21 |
+
Requires transformers>=4.0.0
|
22 |
+
|
23 |
## Description
|
24 |
|
25 |
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
|
README.md~
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
tags:
|
5 |
-
- question-answering
|
6 |
-
- summarization
|
7 |
-
- emotion-detection
|
8 |
-
license: Apache 2.0
|
9 |
-
datasets:
|
10 |
-
- coqa
|
11 |
-
- squad_v2
|
12 |
-
- go_emotions
|
13 |
-
- cnn_dailymail
|
14 |
-
metrics:
|
15 |
-
- f1
|
16 |
-
---
|
17 |
-
# T5 Base with QA + Summary + Emotion
|
18 |
-
|
19 |
-
## Description
|
20 |
-
|
21 |
-
This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.
|
22 |
-
|
23 |
-
It achieves a score of **F1 76.7** on the Squad 2 dev set and a score of **F1 68.5** on the CoQa dev set.
|
24 |
-
|
25 |
-
Summarisation and emotion detection has not been evaluated yet.
|
26 |
-
|
27 |
-
## Usage
|
28 |
-
|
29 |
-
### Question answering
|
30 |
-
|
31 |
-
```python
|
32 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
33 |
-
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
34 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
35 |
-
|
36 |
-
def get_answer(question, prev_qa, context):
|
37 |
-
input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
|
38 |
-
input_text.append(f"q: {question}")
|
39 |
-
input_text.append(f"c: {context}")
|
40 |
-
input_text = " ".join(input_text)
|
41 |
-
features = tokenizer([input_text], return_tensors='pt')
|
42 |
-
tokens = model.generate(input_ids=features['input_ids'],
|
43 |
-
attention_mask=features['attention_mask'], max_length=64)
|
44 |
-
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
45 |
-
|
46 |
-
print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown
|
47 |
-
|
48 |
-
context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."
|
49 |
-
|
50 |
-
print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
|
51 |
-
```
|
52 |
-
|
53 |
-
### Summarisation
|
54 |
-
|
55 |
-
```python
|
56 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
57 |
-
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
58 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
59 |
-
|
60 |
-
def summary(context):
|
61 |
-
input_text = f"summarize: {context}"
|
62 |
-
features = tokenizer([input_text], return_tensors='pt')
|
63 |
-
tokens = model.generate(input_ids=features['input_ids'],
|
64 |
-
attention_mask=features['attention_mask'], max_length=64)
|
65 |
-
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
66 |
-
```
|
67 |
-
|
68 |
-
### Emotion detection
|
69 |
-
|
70 |
-
```python
|
71 |
-
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
72 |
-
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
|
73 |
-
tokenizer = T5Tokenizer.from_pretrained("t5-base")
|
74 |
-
|
75 |
-
def emotion(context):
|
76 |
-
input_text = f"emotion: {context}"
|
77 |
-
features = tokenizer([input_text], return_tensors='pt')
|
78 |
-
tokens = model.generate(input_ids=features['input_ids'],
|
79 |
-
attention_mask=features['attention_mask'], max_length=64)
|
80 |
-
return tokenizer.decode(tokens[0], skip_special_tokens=True)
|
81 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|