|
--- |
|
tags: |
|
- FrozenLake-v1-4x4 |
|
- q-learning |
|
- reinforcement-learning |
|
- custom-implementation |
|
model-index: |
|
- name: q-FrozenLake-v1-custom-map-Slippery-edition |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: FrozenLake-v1-4x4 |
|
type: FrozenLake-v1-4x4 |
|
metrics: |
|
- type: mean_reward |
|
value: 0.89 +/- 0.31 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **Q-Learning** Agent playing1 **FrozenLake-v1** |
|
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . |
|
|
|
## Usage |
|
|
|
```python |
|
|
|
model = load_from_hub(repo_id="kinkpunk/q-FrozenLake-v1-custom-map-Slippery-edition", |
|
filename="q-learning.pkl") |
|
|
|
# Don't forget to change additional attributes |
|
# when you create environment using 4x4 map |
|
env = gym.make('FrozenLake-v1', |
|
desc=["SFFF", "FHHF", "FFHF", "HFFG"], |
|
is_slippery=True) |
|
``` |
|
|
|
## Training parameters |
|
|
|
```python |
|
# Training parameters |
|
n_training_episodes = 105000 # Total training episodes |
|
learning_rate = 0.8 # Learning rate |
|
|
|
# Evaluation parameters |
|
n_eval_episodes = 100 # Total number of test episodes |
|
|
|
# Environment parameters |
|
env_id = "FrozenLake-v1" # Name of the environment |
|
max_steps = 99 # Max steps per episode |
|
gamma = 0.98 # Discounting rate |
|
eval_seed = [] # The evaluation seed of the environment |
|
|
|
# Exploration parameters |
|
max_epsilon = 0.99 # Exploration probability at start |
|
min_epsilon = 0.02 # Minimum exploration probability |
|
decay_rate = 0.009 # Exponential decay rate for exploration prob |
|
|
|
``` |