metadata
language:
- ar
license: apache-2.0
tags:
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_7_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-xls-r-300m-arabic
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
type: mozilla-foundation/common_voice_7_0
name: Common Voice ar
args: ar
metrics:
- type: wer
value: 38.83
name: Test WER With LM
- type: cer
value: 15.33
name: Test CER With LM
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ar
metrics:
- name: Test WER
type: wer
value: 89.8
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: ar
metrics:
- name: Test WER
type: wer
value: 87.46
wav2vec2-large-xlsr-300-arabic
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.4514
- Wer: 0.4256
- Cer: 0.1528
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_7_0
with splittest
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
5.4375 | 1.8 | 500 | 3.3330 | 1.0 | 1.0 |
2.2187 | 3.6 | 1000 | 0.7790 | 0.6501 | 0.2338 |
0.9471 | 5.4 | 1500 | 0.5353 | 0.5015 | 0.1822 |
0.7416 | 7.19 | 2000 | 0.4889 | 0.4490 | 0.1640 |
0.6358 | 8.99 | 2500 | 0.4514 | 0.4256 | 0.1528 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0