anton-l's picture
anton-l HF staff
Upload README.md
d707371
|
raw
history blame
3.69 kB
metadata
language:
  - ar
license: apache-2.0
tags:
  - automatic-speech-recognition
  - hf-asr-leaderboard
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_7_0
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-xls-r-300m-arabic
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_7_0
          name: Common Voice ar
          args: ar
        metrics:
          - type: wer
            value: 38.83
            name: Test WER With LM
          - type: cer
            value: 15.33
            name: Test CER With LM
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: ar
        metrics:
          - name: Test WER
            type: wer
            value: 89.8
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: ar
        metrics:
          - name: Test WER
            type: wer
            value: 87.46

wav2vec2-large-xlsr-300-arabic

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4514
  • Wer: 0.4256
  • Cer: 0.1528

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_7_0 with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xlsr-300-arabic --dataset mozilla-foundation/common_voice_7_0 --config ur --split test

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xlsr-300-arabic"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ar", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.4375 1.8 500 3.3330 1.0 1.0
2.2187 3.6 1000 0.7790 0.6501 0.2338
0.9471 5.4 1500 0.5353 0.5015 0.1822
0.7416 7.19 2000 0.4889 0.4490 0.1640
0.6358 8.99 2500 0.4514 0.4256 0.1528

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0