|
--- |
|
language: |
|
- ur |
|
|
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- robust-speech-event |
|
datasets: |
|
- mozilla-foundation/common_voice_8_0 |
|
metrics: |
|
- wer |
|
- cer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-Urdu |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
type: mozilla-foundation/common_voice_8_0 |
|
name: Common Voice ur |
|
args: ur |
|
metrics: |
|
- type: wer |
|
value: 51.96 |
|
name: Test WER With LM |
|
|
|
- type: cer |
|
value: 22.69 |
|
name: Test CER |
|
|
|
|
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-Urdu |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5867 |
|
- Wer: 0.6240 |
|
- Cer: 0.2579 |
|
|
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 11.1231 | 8.31 | 100 | 3.5275 | 1.0 | 1.0 | |
|
| 3.4028 | 16.63 | 200 | 3.1164 | 1.0 | 1.0 | |
|
| 3.1973 | 24.94 | 300 | 2.5590 | 1.0 | 1.0 | |
|
| 1.3774 | 33.31 | 400 | 1.4729 | 0.7646 | 0.3325 | |
|
| 0.5427 | 41.63 | 500 | 1.4140 | 0.6939 | 0.3001 | |
|
| 0.3541 | 49.94 | 600 | 1.4532 | 0.6580 | 0.2815 | |
|
| 0.26 | 58.31 | 700 | 1.5309 | 0.6403 | 0.2726 | |
|
| 0.2025 | 66.63 | 800 | 1.5230 | 0.6310 | 0.2655 | |
|
| 0.171 | 74.94 | 900 | 1.5578 | 0.6336 | 0.2632 | |
|
| 0.1511 | 83.31 | 1000 | 1.5733 | 0.6321 | 0.2635 | |
|
| 0.1352 | 91.63 | 1100 | 1.6022 | 0.6255 | 0.2608 | |
|
| 0.1192 | 99.94 | 1200 | 1.5867 | 0.6240 | 0.2579 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|