kingabzpro's picture
add LM preprocessing
e829dfa
|
raw
history blame
2.94 kB
metadata
language:
  - id
license: apache-2.0
tags:
  - automatic-speech-recognition
  - robust-speech-event
datasets:
  - mozilla-foundation/common_voice_7_0
metrics:
  - wer
  - cer
model-index:
  - name: wav2vec2-large-xls-r-300m-Indonesian
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_7_0
          name: Common Voice id
          args: id
        metrics:
          - type: wer
            value: 25.06
            name: Test WER With LM
          - type: cer
            value: 6.5
            name: Test CER With LM

wav2vec2-large-xls-r-300m-Indonesian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4087
  • Wer: 0.2461
  • Cer: 0.0666

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.0788 4.26 200 2.9389 1.0 1.0
2.8288 8.51 400 2.2535 1.0 0.8004
0.907 12.77 600 0.4558 0.4243 0.1095
0.4071 17.02 800 0.4013 0.3468 0.0913
0.3 21.28 1000 0.4167 0.3075 0.0816
0.2544 25.53 1200 0.4132 0.2835 0.0762
0.2145 29.79 1400 0.3878 0.2693 0.0729
0.1923 34.04 1600 0.4023 0.2623 0.0702
0.1681 38.3 1800 0.3984 0.2581 0.0686
0.1598 42.55 2000 0.3982 0.2493 0.0663
0.1464 46.81 2200 0.4087 0.2461 0.0666

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0