Text Generation
Transformers
Safetensors
English
mistral
genomics
medical
conversational
text-generation-inference
kimou605 commited on
Commit
2bfab49
·
verified ·
1 Parent(s): 748df0d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -11
README.md CHANGED
@@ -37,13 +37,13 @@ This is the model card of a 🤗 transformers model that has been pushed on the
37
  ## Uses
38
 
39
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
- ```
41
  !pip install transformers
42
  !pip install accelerate
43
  !pip install bitsandbytes
44
  ```
45
 
46
- ```
47
  import os
48
  import torch
49
  import transformers
@@ -56,8 +56,7 @@ from transformers import (
56
 
57
  ```
58
 
59
- ```
60
-
61
  model_name='kimou605/BioTATA-7B'
62
  model_config = transformers.AutoConfig.from_pretrained(
63
  model_name,
@@ -68,8 +67,7 @@ tokenizer.pad_token = tokenizer.eos_token
68
  tokenizer.padding_side = "right"
69
  ```
70
 
71
- ```
72
-
73
  # Activate 4-bit precision base model loading
74
  use_4bit = True
75
 
@@ -83,7 +81,7 @@ bnb_4bit_quant_type = "nf4"
83
  use_nested_quant = True
84
  ```
85
 
86
- ```
87
  compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
88
 
89
  bnb_config = BitsAndBytesConfig(
@@ -94,14 +92,14 @@ bnb_config = BitsAndBytesConfig(
94
  )
95
  ```
96
 
97
- ```
98
  model = AutoModelForCausalLM.from_pretrained(
99
  model_name,
100
  quantization_config=bnb_config,
101
  )
102
  ```
103
 
104
- ```
105
  pipeline = transformers.pipeline(
106
  "text-generation",
107
  model=model,
@@ -111,14 +109,14 @@ pipeline = transformers.pipeline(
111
 
112
  )
113
  ```
114
- ```
115
  messages = [{"role": "user", "content": "What is TATA"}]
116
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
117
  outputs = pipeline(prompt, max_new_tokens=200, do_sample=True, temperature=0.01, top_k=50, top_p=0.95)
118
  print(outputs[0]["generated_text"])
119
  ```
120
 
121
-
122
  ## Bias, Risks, and Limitations
123
 
124
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
37
  ## Uses
38
 
39
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
+ ```python
41
  !pip install transformers
42
  !pip install accelerate
43
  !pip install bitsandbytes
44
  ```
45
 
46
+ ```python
47
  import os
48
  import torch
49
  import transformers
 
56
 
57
  ```
58
 
59
+ ```python
 
60
  model_name='kimou605/BioTATA-7B'
61
  model_config = transformers.AutoConfig.from_pretrained(
62
  model_name,
 
67
  tokenizer.padding_side = "right"
68
  ```
69
 
70
+ ```python
 
71
  # Activate 4-bit precision base model loading
72
  use_4bit = True
73
 
 
81
  use_nested_quant = True
82
  ```
83
 
84
+ ```python
85
  compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
86
 
87
  bnb_config = BitsAndBytesConfig(
 
92
  )
93
  ```
94
 
95
+ ```python
96
  model = AutoModelForCausalLM.from_pretrained(
97
  model_name,
98
  quantization_config=bnb_config,
99
  )
100
  ```
101
 
102
+ ```python
103
  pipeline = transformers.pipeline(
104
  "text-generation",
105
  model=model,
 
109
 
110
  )
111
  ```
112
+ ```python
113
  messages = [{"role": "user", "content": "What is TATA"}]
114
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
115
  outputs = pipeline(prompt, max_new_tokens=200, do_sample=True, temperature=0.01, top_k=50, top_p=0.95)
116
  print(outputs[0]["generated_text"])
117
  ```
118
 
119
+ This will inference the model on 4.8GB Vram
120
  ## Bias, Risks, and Limitations
121
 
122
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->