metadata
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Chinese - Kimbo Chen
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- name: Wer
type: wer
value: 40.81883316274309
Whisper Small Chinese - Kimbo Chen
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1984
- Wer: 40.8188
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1438 | 1.05 | 200 | 0.1822 | 42.4360 |
0.0315 | 2.1 | 400 | 0.1869 | 42.1290 |
0.0113 | 4.01 | 600 | 0.1953 | 40.6346 |
0.0053 | 5.06 | 800 | 0.1950 | 40.6755 |
0.0035 | 6.11 | 1000 | 0.1984 | 40.8188 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2