kien47's picture
update model card README.md
359a27b
---
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9294722867573847
- name: Recall
type: recall
value: 0.942611915180074
- name: F1
type: f1
value: 0.9359959893048128
- name: Accuracy
type: accuracy
value: 0.9859087804025609
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased
This model was trained from scratch on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0559
- Precision: 0.9295
- Recall: 0.9426
- F1: 0.9360
- Accuracy: 0.9859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0824 | 1.0 | 1756 | 0.0594 | 0.9151 | 0.9265 | 0.9207 | 0.9837 |
| 0.0376 | 2.0 | 3512 | 0.0538 | 0.9218 | 0.9387 | 0.9302 | 0.9854 |
| 0.0212 | 3.0 | 5268 | 0.0559 | 0.9295 | 0.9426 | 0.9360 | 0.9859 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.13.3