metadata
base_model: distilbert-base-uncased
datasets:
- shawhin/imdb-truncated
language:
- en
library_name: peft
license: apache-2.0
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the shawhin/imdb-truncated dataset. It achieves the following results on the evaluation set:
- Loss: 1.1124
- Accuracy: {'accuracy': 0.873}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 250 | 0.7531 | {'accuracy': 0.822} |
0.4366 | 2.0 | 500 | 0.5896 | {'accuracy': 0.85} |
0.4366 | 3.0 | 750 | 0.6032 | {'accuracy': 0.891} |
0.2163 | 4.0 | 1000 | 0.6212 | {'accuracy': 0.892} |
0.2163 | 5.0 | 1250 | 0.6968 | {'accuracy': 0.882} |
0.0917 | 6.0 | 1500 | 0.8690 | {'accuracy': 0.886} |
0.0917 | 7.0 | 1750 | 0.9716 | {'accuracy': 0.875} |
0.0131 | 8.0 | 2000 | 1.0623 | {'accuracy': 0.877} |
0.0131 | 9.0 | 2250 | 1.0750 | {'accuracy': 0.874} |
0.0043 | 10.0 | 2500 | 1.1124 | {'accuracy': 0.873} |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1