roberta-base / README.md
khalidrajan's picture
End of training
9f20adc verified
metadata
tags:
  - generated_from_trainer
model-index:
  - name: roberta-base
    results: []

roberta-base

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2676
  • Law Precision: 0.8739
  • Law Recall: 0.9065
  • Law F1: 0.8899
  • Law Number: 107
  • Violated by Precision: 0.8254
  • Violated by Recall: 0.7324
  • Violated by F1: 0.7761
  • Violated by Number: 71
  • Violated on Precision: 0.5077
  • Violated on Recall: 0.5156
  • Violated on F1: 0.5116
  • Violated on Number: 64
  • Violation Precision: 0.6460
  • Violation Recall: 0.6979
  • Violation F1: 0.6710
  • Violation Number: 374
  • Overall Precision: 0.6890
  • Overall Recall: 0.7192
  • Overall F1: 0.7037
  • Overall Accuracy: 0.9504

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 85 0.7040 0.0 0.0 0.0 107 0.0 0.0 0.0 71 0.0 0.0 0.0 64 0.0 0.0 0.0 374 0.0 0.0 0.0 0.7707
No log 2.0 170 0.3668 0.0 0.0 0.0 107 0.0 0.0 0.0 71 0.0 0.0 0.0 64 0.2416 0.2888 0.2631 374 0.2416 0.1753 0.2032 0.8896
No log 3.0 255 0.2618 0.3077 0.1869 0.2326 107 0.0 0.0 0.0 71 0.0 0.0 0.0 64 0.4626 0.5455 0.5006 374 0.4427 0.3636 0.3993 0.9171
No log 4.0 340 0.2232 0.7091 0.7290 0.7189 107 0.5316 0.5915 0.56 71 0.3523 0.4844 0.4079 64 0.5011 0.6016 0.5468 374 0.5179 0.6104 0.5604 0.9328
No log 5.0 425 0.1929 0.7778 0.8505 0.8125 107 0.84 0.5915 0.6942 71 0.44 0.5156 0.4748 64 0.5043 0.6257 0.5585 374 0.5666 0.6494 0.6051 0.9440
0.489 6.0 510 0.2214 0.7227 0.8037 0.7611 107 0.7538 0.6901 0.7206 71 0.4203 0.4531 0.4361 64 0.5683 0.6337 0.5992 374 0.5985 0.6510 0.6236 0.9447
0.489 7.0 595 0.2452 0.8598 0.8598 0.8598 107 0.7759 0.6338 0.6977 71 0.4853 0.5156 0.5 64 0.6460 0.6684 0.6570 374 0.6774 0.6818 0.6796 0.9469
0.489 8.0 680 0.2409 0.9245 0.9159 0.9202 107 0.7625 0.8592 0.8079 71 0.4321 0.5469 0.4828 64 0.6614 0.6738 0.6675 374 0.6883 0.7240 0.7057 0.9485
0.489 9.0 765 0.2760 0.8739 0.9065 0.8899 107 0.8529 0.8169 0.8345 71 0.5 0.5312 0.5152 64 0.6014 0.6898 0.6426 374 0.6612 0.7256 0.6920 0.9473
0.489 10.0 850 0.2676 0.8739 0.9065 0.8899 107 0.8254 0.7324 0.7761 71 0.5077 0.5156 0.5116 64 0.6460 0.6979 0.6710 374 0.6890 0.7192 0.7037 0.9504

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1