|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny.en |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper3 |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the tiny dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5509 |
|
- Wer: 26.9488 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 3.8281 | 0.2778 | 10 | 3.7929 | 80.4009 | |
|
| 3.209 | 0.5556 | 20 | 3.0014 | 68.3742 | |
|
| 2.1066 | 0.8333 | 30 | 1.7613 | 63.9198 | |
|
| 0.9963 | 1.1111 | 40 | 0.8741 | 52.4340 | |
|
| 0.6922 | 1.3889 | 50 | 0.7009 | 35.8256 | |
|
| 0.5816 | 1.6667 | 60 | 0.6238 | 31.1486 | |
|
| 0.5684 | 1.9444 | 70 | 0.5698 | 35.4757 | |
|
| 0.427 | 2.2222 | 80 | 0.5380 | 27.2669 | |
|
| 0.4395 | 2.5 | 90 | 0.5162 | 32.7394 | |
|
| 0.3861 | 2.7778 | 100 | 0.4953 | 24.5307 | |
|
| 0.3745 | 3.0556 | 110 | 0.4837 | 24.6262 | |
|
| 0.2487 | 3.3333 | 120 | 0.4733 | 23.5762 | |
|
| 0.2343 | 3.6111 | 130 | 0.4652 | 24.9443 | |
|
| 0.2429 | 3.8889 | 140 | 0.4581 | 24.0853 | |
|
| 0.1286 | 4.1667 | 150 | 0.4673 | 24.2762 | |
|
| 0.1304 | 4.4444 | 160 | 0.4698 | 31.7213 | |
|
| 0.1361 | 4.7222 | 170 | 0.4690 | 33.0894 | |
|
| 0.1447 | 5.0 | 180 | 0.4812 | 24.6580 | |
|
| 0.0617 | 5.2778 | 190 | 0.4871 | 29.9395 | |
|
| 0.0617 | 5.5556 | 200 | 0.4884 | 24.8489 | |
|
| 0.0577 | 5.8333 | 210 | 0.4998 | 26.8533 | |
|
| 0.038 | 6.1111 | 220 | 0.5007 | 24.8489 | |
|
| 0.0269 | 6.3889 | 230 | 0.5123 | 27.1397 | |
|
| 0.0321 | 6.6667 | 240 | 0.5005 | 23.3535 | |
|
| 0.0296 | 6.9444 | 250 | 0.5332 | 31.8804 | |
|
| 0.0207 | 7.2222 | 260 | 0.5237 | 30.0668 | |
|
| 0.0215 | 7.5 | 270 | 0.5223 | 25.5488 | |
|
| 0.0198 | 7.7778 | 280 | 0.5157 | 30.1941 | |
|
| 0.0273 | 8.0556 | 290 | 0.5290 | 27.5533 | |
|
| 0.0197 | 8.3333 | 300 | 0.5509 | 26.9488 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1.dev0 |
|
- Tokenizers 0.19.1 |
|
|