chat-table-flan-t5 / README.md
kevinng77's picture
Update README.md
a046d77
|
raw
history blame
1.49 kB
metadata
license: apache-2.0
language:
  - en
pipeline_tag: text2text-generation
library_name: transformers
tags:
  - text-generation-inference
widget:
  - text: |
      Given a SQL table named 'price_data' with the following columns:
      Transaction_ID, Platform, Product_ID, User_ID, Transaction_Amount
      Construct a SQL query to answer the following question:
      Q: How many rows are there
    example_title: How many rows are there?

A text2sql T5 model, finetuned from Flan-t5-base. Code: Link A further finetuning will significantly increase the performance of Flan-t5 model on Text-to-SQL tasks.

Inference Example:

from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline

table_columns = "Transaction_ID, Platform, Product_ID, User_ID, Transaction_Amount, Region, Transaction_Time, Transaction_Unit, User_Comments"

table_name = "my_data"

PROMPT_INPUT = f"""
Given a SQL table named '{table_name}' with the following columns:
{table_columns}

Construct a SQL query to answer the following question:
Q: {{question}}.
"""

model_id = "kevinng77/chat-table-flan-t5"
tokenizer = T5Tokenizer.from_pretrained(model_id)
model = T5ForConditionalGeneration.from_pretrained(model_id)

input_text = PROMPT_INPUT.format_map({"question": "How many rows are there in the table?"})

pipe = pipeline(
    "text2text-generation",
    model=model, tokenizer=tokenizer, max_length=512
)