kerier's picture
kerier/distilbert-base-uncased-lora-text-classification
dd2000a verified
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7922
  • Accuracy: {'accuracy': 0.88}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3212 {'accuracy': 0.862}
0.4694 2.0 500 0.3175 {'accuracy': 0.89}
0.4694 3.0 750 0.4655 {'accuracy': 0.872}
0.3081 4.0 1000 0.5394 {'accuracy': 0.885}
0.3081 5.0 1250 0.6248 {'accuracy': 0.871}
0.1875 6.0 1500 0.7691 {'accuracy': 0.877}
0.1875 7.0 1750 0.6730 {'accuracy': 0.884}
0.1041 8.0 2000 0.6989 {'accuracy': 0.882}
0.1041 9.0 2250 0.7978 {'accuracy': 0.879}
0.0363 10.0 2500 0.7922 {'accuracy': 0.88}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.37.0
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.15.2