Divyasreepat
commited on
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -44,7 +44,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
44 |
### Example Usage
|
45 |
```python
|
46 |
# Pretrained ResNet backbone.
|
47 |
-
model = keras_hub.models.ResNetBackbone.from_preset("
|
48 |
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
|
49 |
model(input_data)
|
50 |
|
@@ -60,7 +60,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
60 |
)
|
61 |
model(input_data)
|
62 |
# Use resnet for image classification task
|
63 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
64 |
|
65 |
# User timm presets directly from hugingface
|
66 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/resnet101.a1_in1k')
|
@@ -70,7 +70,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
70 |
|
71 |
```python
|
72 |
# Pretrained ResNet backbone.
|
73 |
-
model = keras_hub.models.ResNetBackbone.from_preset("
|
74 |
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
|
75 |
model(input_data)
|
76 |
|
@@ -86,7 +86,7 @@ The following model checkpoints are provided by the Keras team. Weights have bee
|
|
86 |
)
|
87 |
model(input_data)
|
88 |
# Use resnet for image classification task
|
89 |
-
model = keras_hub.models.ImageClassifier.from_preset("
|
90 |
|
91 |
# User timm presets directly from hugingface
|
92 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/resnet101.a1_in1k')
|
|
|
44 |
### Example Usage
|
45 |
```python
|
46 |
# Pretrained ResNet backbone.
|
47 |
+
model = keras_hub.models.ResNetBackbone.from_preset("resnet_152_imagenet")
|
48 |
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
|
49 |
model(input_data)
|
50 |
|
|
|
60 |
)
|
61 |
model(input_data)
|
62 |
# Use resnet for image classification task
|
63 |
+
model = keras_hub.models.ImageClassifier.from_preset("resnet_152_imagenet")
|
64 |
|
65 |
# User timm presets directly from hugingface
|
66 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/resnet101.a1_in1k')
|
|
|
70 |
|
71 |
```python
|
72 |
# Pretrained ResNet backbone.
|
73 |
+
model = keras_hub.models.ResNetBackbone.from_preset("hf://keras/resnet_152_imagenet")
|
74 |
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
|
75 |
model(input_data)
|
76 |
|
|
|
86 |
)
|
87 |
model(input_data)
|
88 |
# Use resnet for image classification task
|
89 |
+
model = keras_hub.models.ImageClassifier.from_preset("hf://keras/resnet_152_imagenet")
|
90 |
|
91 |
# User timm presets directly from hugingface
|
92 |
model = keras_hub.models.ImageClassifier.from_preset('hf://timm/resnet101.a1_in1k')
|