updated model card
Browse files
README.md
CHANGED
@@ -6,24 +6,18 @@ tags:
|
|
6 |
- anomaly-detection
|
7 |
---
|
8 |
|
9 |
-
##
|
10 |
-
|
11 |
-
Timeseries anomaly detection using an Autoencoder
|
12 |
|
13 |
This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/)
|
14 |
|
15 |
Full credits to: [Pavithra Vijay](https://github.com/pavithrasv)
|
16 |
|
17 |
|
18 |
-
##
|
19 |
-
|
20 |
-
More information needed
|
21 |
|
22 |
-
|
23 |
|
24 |
-
More information needed
|
25 |
|
26 |
-
## Training procedure
|
27 |
|
28 |
### Training hyperparameters
|
29 |
|
|
|
6 |
- anomaly-detection
|
7 |
---
|
8 |
|
9 |
+
## Timeseries anomaly detection using an Autoencoder
|
|
|
|
|
10 |
|
11 |
This repo contains the model and the notebook to this [Keras example on Timeseries anomaly detection using an Autoencoder.](https://keras.io/examples/timeseries/timeseries_anomaly_detection/)
|
12 |
|
13 |
Full credits to: [Pavithra Vijay](https://github.com/pavithrasv)
|
14 |
|
15 |
|
16 |
+
## Background and Datasets
|
|
|
|
|
17 |
|
18 |
+
This script demonstrates how you can use a reconstruction convolutional autoencoder model to detect anomalies in timeseries data. We will use the [Numenta Anomaly Benchmark(NAB)](https://www.kaggle.com/datasets/boltzmannbrain/nab) dataset. It provides artifical timeseries data containing labeled anomalous periods of behavior. Data are ordered, timestamped, single-valued metrics.
|
19 |
|
|
|
20 |
|
|
|
21 |
|
22 |
### Training hyperparameters
|
23 |
|