lucifertrj
commited on
Commit
•
f92e992
1
Parent(s):
c03038a
add model card
Browse files
README.md
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: gpl-2.0
|
3 |
---
|
@@ -6,4 +9,55 @@ license: gpl-2.0
|
|
6 |
|
7 |
This is an example notebook for Keras sprint prepared by Hugging Face. Keras Sprint aims to reproduce Keras examples and build interactive demos to them. The markdown parts beginning with 🤗 and the following code snippets are the parts added by the Hugging Face team to give you an example of how to host your model and build a demo.
|
8 |
|
9 |
-
**Original Author of the DCGAN to generate face images Example:** [fchollet](https://twitter.com/fchollet)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
â–²
|
3 |
+
🙂
|
4 |
---
|
5 |
license: gpl-2.0
|
6 |
---
|
|
|
9 |
|
10 |
This is an example notebook for Keras sprint prepared by Hugging Face. Keras Sprint aims to reproduce Keras examples and build interactive demos to them. The markdown parts beginning with 🤗 and the following code snippets are the parts added by the Hugging Face team to give you an example of how to host your model and build a demo.
|
11 |
|
12 |
+
**Original Author of the DCGAN to generate face images Example:** [fchollet](https://twitter.com/fchollet)
|
13 |
+
|
14 |
+
## Steps to Train the DCGAN
|
15 |
+
|
16 |
+
1. Create the discriminator
|
17 |
+
- It maps a 64x64 image to a binary classification score.
|
18 |
+
|
19 |
+
```py
|
20 |
+
|
21 |
+
discriminator = keras.Sequential(
|
22 |
+
[
|
23 |
+
keras.Input(shape=(64, 64, 3)),
|
24 |
+
layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
|
25 |
+
layers.LeakyReLU(alpha=0.2),
|
26 |
+
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
|
27 |
+
layers.LeakyReLU(alpha=0.2),
|
28 |
+
layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
|
29 |
+
layers.LeakyReLU(alpha=0.2),
|
30 |
+
layers.Flatten(),
|
31 |
+
layers.Dropout(0.2),
|
32 |
+
layers.Dense(1, activation="sigmoid"),
|
33 |
+
],
|
34 |
+
name="discriminator",
|
35 |
+
)
|
36 |
+
|
37 |
+
```
|
38 |
+
|
39 |
+
2. Create the generator
|
40 |
+
- It mirrors the discriminator, replacing Conv2D layers with Conv2DTranspose layers
|
41 |
+
|
42 |
+
```py
|
43 |
+
|
44 |
+
latent_dim = 128
|
45 |
+
|
46 |
+
generator = keras.Sequential(
|
47 |
+
[
|
48 |
+
keras.Input(shape=(latent_dim,)),
|
49 |
+
layers.Dense(8 * 8 * 128),
|
50 |
+
layers.Reshape((8, 8, 128)),
|
51 |
+
layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding="same"),
|
52 |
+
layers.LeakyReLU(alpha=0.2),
|
53 |
+
layers.Conv2DTranspose(256, kernel_size=4, strides=2, padding="same"),
|
54 |
+
layers.LeakyReLU(alpha=0.2),
|
55 |
+
layers.Conv2DTranspose(512, kernel_size=4, strides=2, padding="same"),
|
56 |
+
layers.LeakyReLU(alpha=0.2),
|
57 |
+
layers.Conv2D(3, kernel_size=5, padding="same", activation="sigmoid"),
|
58 |
+
],
|
59 |
+
name="generator",
|
60 |
+
)
|
61 |
+
```
|
62 |
+
|
63 |
+
HF Contributor: [Tarun Jain](https://twitter.com/TRJ_0751)
|