korean_disease_ner / README.md
keonju's picture
update model card README.md
876235e
|
raw
history blame
2.33 kB
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: korean_disease_ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# korean_disease_ner
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0792
- Precision: 0.9478
- Recall: 0.9553
- F1: 0.9515
- Accuracy: 0.9879
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1 | 1.0 | 1850 | 0.0461 | 0.9329 | 0.9401 | 0.9365 | 0.9850 |
| 0.0346 | 2.0 | 3700 | 0.0433 | 0.9367 | 0.9500 | 0.9433 | 0.9864 |
| 0.0211 | 3.0 | 5550 | 0.0482 | 0.9438 | 0.9493 | 0.9465 | 0.9871 |
| 0.013 | 4.0 | 7400 | 0.0532 | 0.9449 | 0.9501 | 0.9475 | 0.9869 |
| 0.0091 | 5.0 | 9250 | 0.0584 | 0.9430 | 0.9549 | 0.9489 | 0.9872 |
| 0.0063 | 6.0 | 11100 | 0.0675 | 0.9497 | 0.9503 | 0.9500 | 0.9874 |
| 0.0044 | 7.0 | 12950 | 0.0660 | 0.9467 | 0.9543 | 0.9505 | 0.9876 |
| 0.0032 | 8.0 | 14800 | 0.0752 | 0.9429 | 0.9563 | 0.9495 | 0.9873 |
| 0.0025 | 9.0 | 16650 | 0.0766 | 0.9463 | 0.9561 | 0.9512 | 0.9878 |
| 0.0019 | 10.0 | 18500 | 0.0792 | 0.9478 | 0.9553 | 0.9515 | 0.9879 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.0
- Tokenizers 0.13.2