kennethge123's picture
Model save
58bf6d6 verified
|
raw
history blame
2.84 kB
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: superglue_rte-t5-base
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: super_glue
          type: super_glue
          config: rte
          split: validation
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7725631768953068

superglue_rte-t5-base

This model is a fine-tuned version of t5-base on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5687
  • Accuracy: 0.7726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7109 1.0 623 0.6765 0.5740
0.6562 2.0 1246 0.6030 0.6968
0.548 3.0 1869 0.8049 0.7617
0.4129 4.0 2492 1.3536 0.7329
0.2189 5.0 3115 1.3886 0.7834
0.1378 6.0 3738 1.7001 0.7690
0.0905 7.0 4361 2.0587 0.7545
0.0434 8.0 4984 2.1796 0.7798
0.0715 9.0 5607 1.9936 0.7978
0.0616 10.0 6230 1.9794 0.7762
0.0609 11.0 6853 2.5575 0.7509
0.0108 12.0 7476 2.1022 0.7834
0.0142 13.0 8099 2.0628 0.7834
0.03 14.0 8722 2.1540 0.7726
0.0163 15.0 9345 2.3830 0.7653
0.0152 16.0 9968 2.5031 0.7617
0.0092 17.0 10591 2.4850 0.7653
0.0069 18.0 11214 2.4939 0.7726
0.0184 19.0 11837 2.4949 0.7690
0.0204 20.0 12460 2.5687 0.7726

Framework versions

  • Transformers 4.32.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.15.0
  • Tokenizers 0.13.3