kennethge123's picture
Model save
416276a verified
metadata
license: mit
base_model: kennethge123/superglue_rte-gpt2
tags:
  - generated_from_trainer
datasets:
  - bigbench
metrics:
  - accuracy
model-index:
  - name: entailed_after_rte-gpt2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: bigbench
          type: bigbench
          config: entailed_polarity
          split: validation
          args: entailed_polarity
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7142857142857143

entailed_after_rte-gpt2

This model is a fine-tuned version of kennethge123/superglue_rte-gpt2 on the bigbench dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1865
  • Accuracy: 0.7143

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 30 0.9025 0.3571
No log 2.0 60 0.7155 0.5
No log 3.0 90 1.0014 0.2857
No log 4.0 120 0.9748 0.5714
No log 5.0 150 0.9511 0.5714
No log 6.0 180 1.0164 0.6429
No log 7.0 210 1.6015 0.5
No log 8.0 240 1.2833 0.6429
No log 9.0 270 1.0093 0.7857
No log 10.0 300 1.6339 0.6429
No log 11.0 330 1.3461 0.5714
No log 12.0 360 1.2949 0.6429
No log 13.0 390 1.6343 0.6429
No log 14.0 420 0.8418 0.8571
No log 15.0 450 0.6750 0.8571
No log 16.0 480 2.0221 0.6429
0.5929 17.0 510 0.7579 0.8571
0.5929 18.0 540 1.5713 0.7143
0.5929 19.0 570 1.0489 0.7143
0.5929 20.0 600 1.1865 0.7143

Framework versions

  • Transformers 4.37.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.2