Upload tokenizer
Browse files- README.md +199 -0
- special_tokens_map.json +1 -0
- tokenizer.py +96 -0
- tokenizer_config.json +12 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
tokenizer.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Dict, Tuple
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from transformers import PreTrainedTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
class AlphabetTokenizer(PreTrainedTokenizer):
|
8 |
+
vocab_files_names = {"vocab_file": "vocab.json"}
|
9 |
+
special_tokens_dict = {
|
10 |
+
'unk_token': '[UNK]',
|
11 |
+
'sep_token': '[SEP]',
|
12 |
+
'pad_token': '[PAD]',
|
13 |
+
'cls_token': '[CLS]',
|
14 |
+
'mask_token': '[MASK]'
|
15 |
+
}
|
16 |
+
|
17 |
+
def __init__(self, **kwargs):
|
18 |
+
self.alphabet = [chr(i) for i in range(65, 65+19)] + [chr(i).lower() for i in range(65, 65+19)] + [str(i) for i in range(0, 10)] + ['.', '+', '-', ' ', 'W']
|
19 |
+
self.vocab = {char: i for i, char in enumerate(self.alphabet)}
|
20 |
+
self.inv_vocab = {i: char for char, i in self.vocab.items()}
|
21 |
+
|
22 |
+
# Initialize with default special tokens
|
23 |
+
super().__init__(
|
24 |
+
**kwargs
|
25 |
+
)
|
26 |
+
# override default _add_tokens of special tokens, and we add manually afterwards
|
27 |
+
self._added_tokens_decoder = {}
|
28 |
+
self.add_special_tokens(self.special_tokens_dict)
|
29 |
+
|
30 |
+
def get_vocab(self) -> Dict[str, int]:
|
31 |
+
return dict(self.vocab)
|
32 |
+
|
33 |
+
def _tokenize(self, text: str) -> List[str]:
|
34 |
+
return [char for char in text if char in self.alphabet or char in self.vocab]
|
35 |
+
|
36 |
+
def _convert_token_to_id(self, token: str) -> int:
|
37 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
38 |
+
|
39 |
+
def _convert_id_to_token(self, index: int) -> str:
|
40 |
+
return self.inv_vocab.get(index, self.unk_token)
|
41 |
+
|
42 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
43 |
+
return ''.join(tokens)
|
44 |
+
|
45 |
+
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
|
46 |
+
if token_ids_1 is None:
|
47 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
48 |
+
cls = [self.cls_token_id]
|
49 |
+
sep = [self.sep_token_id]
|
50 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
51 |
+
|
52 |
+
def add_special_tokens(self, special_tokens_dict: Dict[str, str]) -> int:
|
53 |
+
"""Override add_special_tokens to update both vocab and inv_vocab"""
|
54 |
+
added_tokens = 0
|
55 |
+
for token_name, token in special_tokens_dict.items():
|
56 |
+
if token not in self.vocab:
|
57 |
+
self.vocab[token] = len(self.vocab)
|
58 |
+
self.inv_vocab[len(self.inv_vocab)] = token
|
59 |
+
self.all_special_tokens_extended.append(token)
|
60 |
+
setattr(self, f"{token_name}_token", token)
|
61 |
+
added_tokens += 1
|
62 |
+
return added_tokens
|
63 |
+
|
64 |
+
@property
|
65 |
+
def vocab_size(self) -> int:
|
66 |
+
return len(self.vocab)
|
67 |
+
|
68 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
69 |
+
"""Save the vocabulary and special tokens file to a directory."""
|
70 |
+
if not os.path.isdir(save_directory):
|
71 |
+
raise ValueError(f"Vocabulary path ({save_directory}) should be a directory")
|
72 |
+
|
73 |
+
vocab_file = os.path.join(
|
74 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.json"
|
75 |
+
)
|
76 |
+
|
77 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
78 |
+
f.write(json.dumps(self.vocab, ensure_ascii=False))
|
79 |
+
|
80 |
+
return (vocab_file,)
|
81 |
+
|
82 |
+
@classmethod
|
83 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
|
84 |
+
"""Load the tokenizer from a pretrained model vocabulary."""
|
85 |
+
tokenizer = cls(*init_inputs, **kwargs)
|
86 |
+
vocab_file = os.path.join(pretrained_model_name_or_path, tokenizer.vocab_files_names["vocab_file"])
|
87 |
+
if os.path.isfile(vocab_file):
|
88 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
89 |
+
vocab = json.load(f)
|
90 |
+
tokenizer.vocab = vocab
|
91 |
+
tokenizer.inv_vocab = {v: k for k, v in vocab.items()}
|
92 |
+
|
93 |
+
# override default _add_tokens of special tokens, and we added manually
|
94 |
+
tokenizer._added_tokens_decoder = {}
|
95 |
+
tokenizer.add_special_tokens(cls.special_tokens_dict)
|
96 |
+
return tokenizer
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenizer.AlphabetTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"clean_up_tokenization_spaces": true,
|
10 |
+
"model_max_length": 2048,
|
11 |
+
"tokenizer_class": "AlphabetTokenizer"
|
12 |
+
}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6, "H": 7, "I": 8, "J": 9, "K": 10, "L": 11, "M": 12, "N": 13, "O": 14, "P": 15, "Q": 16, "R": 17, "S": 18, "a": 19, "b": 20, "c": 21, "d": 22, "e": 23, "f": 24, "g": 25, "h": 26, "i": 27, "j": 28, "k": 29, "l": 30, "m": 31, "n": 32, "o": 33, "p": 34, "q": 35, "r": 36, "s": 37, "0": 38, "1": 39, "2": 40, "3": 41, "4": 42, "5": 43, "6": 44, "7": 45, "8": 46, "9": 47, ".": 48, "+": 49, "-": 50, " ": 51, "W": 52, ">": 53, "X": 54, "[UNK]": 55, "[SEP]": 56, "[PAD]": 57, "[CLS]": 58, "[MASK]": 59}
|