Text Generation
Transformers
Safetensors
llama
go
text-generation-inference
Inference Endpoints
kenhktsui commited on
Commit
5cc4efb
1 Parent(s): f13a69e

Upload tokenizer

Browse files
Files changed (5) hide show
  1. README.md +199 -0
  2. special_tokens_map.json +1 -0
  3. tokenizer.py +96 -0
  4. tokenizer_config.json +12 -0
  5. vocab.json +1 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
tokenizer.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Dict, Tuple
2
+ import json
3
+ import os
4
+ from transformers import PreTrainedTokenizer
5
+
6
+
7
+ class AlphabetTokenizer(PreTrainedTokenizer):
8
+ vocab_files_names = {"vocab_file": "vocab.json"}
9
+ special_tokens_dict = {
10
+ 'unk_token': '[UNK]',
11
+ 'sep_token': '[SEP]',
12
+ 'pad_token': '[PAD]',
13
+ 'cls_token': '[CLS]',
14
+ 'mask_token': '[MASK]'
15
+ }
16
+
17
+ def __init__(self, **kwargs):
18
+ self.alphabet = [chr(i) for i in range(65, 65+19)] + [chr(i).lower() for i in range(65, 65+19)] + [str(i) for i in range(0, 10)] + ['.', '+', '-', ' ', 'W']
19
+ self.vocab = {char: i for i, char in enumerate(self.alphabet)}
20
+ self.inv_vocab = {i: char for char, i in self.vocab.items()}
21
+
22
+ # Initialize with default special tokens
23
+ super().__init__(
24
+ **kwargs
25
+ )
26
+ # override default _add_tokens of special tokens, and we add manually afterwards
27
+ self._added_tokens_decoder = {}
28
+ self.add_special_tokens(self.special_tokens_dict)
29
+
30
+ def get_vocab(self) -> Dict[str, int]:
31
+ return dict(self.vocab)
32
+
33
+ def _tokenize(self, text: str) -> List[str]:
34
+ return [char for char in text if char in self.alphabet or char in self.vocab]
35
+
36
+ def _convert_token_to_id(self, token: str) -> int:
37
+ return self.vocab.get(token, self.vocab.get(self.unk_token))
38
+
39
+ def _convert_id_to_token(self, index: int) -> str:
40
+ return self.inv_vocab.get(index, self.unk_token)
41
+
42
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
43
+ return ''.join(tokens)
44
+
45
+ def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
46
+ if token_ids_1 is None:
47
+ return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
48
+ cls = [self.cls_token_id]
49
+ sep = [self.sep_token_id]
50
+ return cls + token_ids_0 + sep + token_ids_1 + sep
51
+
52
+ def add_special_tokens(self, special_tokens_dict: Dict[str, str]) -> int:
53
+ """Override add_special_tokens to update both vocab and inv_vocab"""
54
+ added_tokens = 0
55
+ for token_name, token in special_tokens_dict.items():
56
+ if token not in self.vocab:
57
+ self.vocab[token] = len(self.vocab)
58
+ self.inv_vocab[len(self.inv_vocab)] = token
59
+ self.all_special_tokens_extended.append(token)
60
+ setattr(self, f"{token_name}_token", token)
61
+ added_tokens += 1
62
+ return added_tokens
63
+
64
+ @property
65
+ def vocab_size(self) -> int:
66
+ return len(self.vocab)
67
+
68
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
69
+ """Save the vocabulary and special tokens file to a directory."""
70
+ if not os.path.isdir(save_directory):
71
+ raise ValueError(f"Vocabulary path ({save_directory}) should be a directory")
72
+
73
+ vocab_file = os.path.join(
74
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.json"
75
+ )
76
+
77
+ with open(vocab_file, "w", encoding="utf-8") as f:
78
+ f.write(json.dumps(self.vocab, ensure_ascii=False))
79
+
80
+ return (vocab_file,)
81
+
82
+ @classmethod
83
+ def from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
84
+ """Load the tokenizer from a pretrained model vocabulary."""
85
+ tokenizer = cls(*init_inputs, **kwargs)
86
+ vocab_file = os.path.join(pretrained_model_name_or_path, tokenizer.vocab_files_names["vocab_file"])
87
+ if os.path.isfile(vocab_file):
88
+ with open(vocab_file, "r", encoding="utf-8") as f:
89
+ vocab = json.load(f)
90
+ tokenizer.vocab = vocab
91
+ tokenizer.inv_vocab = {v: k for k, v in vocab.items()}
92
+
93
+ # override default _add_tokens of special tokens, and we added manually
94
+ tokenizer._added_tokens_decoder = {}
95
+ tokenizer.add_special_tokens(cls.special_tokens_dict)
96
+ return tokenizer
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "tokenizer.AlphabetTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 2048,
11
+ "tokenizer_class": "AlphabetTokenizer"
12
+ }
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6, "H": 7, "I": 8, "J": 9, "K": 10, "L": 11, "M": 12, "N": 13, "O": 14, "P": 15, "Q": 16, "R": 17, "S": 18, "a": 19, "b": 20, "c": 21, "d": 22, "e": 23, "f": 24, "g": 25, "h": 26, "i": 27, "j": 28, "k": 29, "l": 30, "m": 31, "n": 32, "o": 33, "p": 34, "q": 35, "r": 36, "s": 37, "0": 38, "1": 39, "2": 40, "3": 41, "4": 42, "5": 43, "6": 44, "7": 45, "8": 46, "9": 47, ".": 48, "+": 49, "-": 50, " ": 51, "W": 52, ">": 53, "X": 54, "[UNK]": 55, "[SEP]": 56, "[PAD]": 57, "[CLS]": 58, "[MASK]": 59}