kekunh's picture
End of training
ea53238 verified
|
raw
history blame
2.37 kB
metadata
license: apache-2.0
base_model: Twitter/twhin-bert-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: financial-twhin-bert-large-3labels-tt
    results: []

financial-twhin-bert-large-3labels-tt

This model is a fine-tuned version of Twitter/twhin-bert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2959
  • Accuracy: 0.8934
  • F1: 0.8943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.0998212817984933e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.8622 0.15 100 0.6806 0.7442 0.6936
0.7005 0.3 200 0.5887 0.7731 0.7317
0.5556 0.46 300 0.4472 0.8242 0.8328
0.462 0.61 400 0.4188 0.8509 0.8546
0.4282 0.76 500 0.3870 0.8444 0.8498
0.4109 0.91 600 0.3031 0.8818 0.8813
0.3524 1.06 700 0.3483 0.8876 0.8859
0.2896 1.21 800 0.3430 0.8725 0.8757
0.2731 1.37 900 0.3743 0.8602 0.8659
0.2598 1.52 1000 0.3246 0.8905 0.8917
0.2954 1.67 1100 0.2988 0.8927 0.8942
0.2456 1.82 1200 0.2981 0.8912 0.8930
0.2428 1.97 1300 0.2959 0.8934 0.8943

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2