metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: distilbert-base-uncased-finetuned-stsb
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.8679004942016133
distilbert-base-uncased-finetuned-stsb
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.5563
- Pearson: 0.8708
- Spearmanr: 0.8679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr |
---|---|---|---|---|---|
No log | 1.0 | 360 | 0.6167 | 0.8601 | 0.8577 |
1.0026 | 2.0 | 720 | 0.6175 | 0.8670 | 0.8653 |
0.3862 | 3.0 | 1080 | 0.6439 | 0.8703 | 0.8675 |
0.3862 | 4.0 | 1440 | 0.5563 | 0.8708 | 0.8679 |
0.2514 | 5.0 | 1800 | 0.5616 | 0.8694 | 0.8659 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3