|
from typing import Dict, List, Any |
|
|
|
import torch as torch |
|
from transformers import pipeline, WhisperProcessor |
|
|
|
from scipy.io.wavfile import read |
|
|
|
|
|
|
|
class EndpointHandler(): |
|
|
|
|
|
|
|
def __init__(self, path=""): |
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
self.pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model="openai/whisper-large", |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
processor = WhisperProcessor.from_pretrained("openai/whisper-large") |
|
self.pipe.model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="nl", task="transcribe") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
print("request") |
|
print(data) |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
text = self.pipe(inputs)["text"] |
|
return text |
|
|