Upload 2 files
Browse files- configuration_gpt_jiang.py +122 -0
- modeling_gpt_jiang.py +807 -0
configuration_gpt_jiang.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI The HuggingFace Inc. team. and KDF.ai All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPTJiang model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
GPT_JIANG_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
class GPTJiangConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`GPTJiangModel`]. It is used to instantiate an
|
29 |
+
GPTJiang model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
30 |
+
with the defaults will yield a similar configuration to that of the GPTJiang
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 50432):
|
38 |
+
Vocabulary size of the GPTJiang model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`GPTJiangModel`].
|
40 |
+
hidden_size (`int`, *optional*, defaults to 6144):
|
41 |
+
Dimension of the encoder layers and the pooler layer.
|
42 |
+
num_hidden_layers (`int`, *optional*, defaults to 44):
|
43 |
+
Number of hidden layers in the Transformer encoder.
|
44 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
45 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
46 |
+
intermediate_size (`int`, *optional*, defaults to 24576):
|
47 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
49 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
50 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
51 |
+
rotary_pct (`float`, *optional*, defaults to 0.25):
|
52 |
+
percentage of hidden dimensions to allocate to rotary embeddings
|
53 |
+
rotary_emb_base (`int`, *optional*, defaults to 10000)
|
54 |
+
base for computing rotary embeddings frequency
|
55 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
56 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
57 |
+
just in case (e.g., 512 or 1024 or 2048).
|
58 |
+
initializer_range (`float`, *optional*, defaults to 1e-5):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
63 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
64 |
+
relevant if `config.is_decoder=True`.
|
65 |
+
use_parallel_residual (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
|
67 |
+
speedup at large scales (e.g. 20B).
|
68 |
+
Example:
|
69 |
+
|
70 |
+
```python
|
71 |
+
>>> from transformers import GPTJiangConfig, GPTJiangModel
|
72 |
+
|
73 |
+
>>> # Initializing a GPTJiang style configuration
|
74 |
+
>>> configuration = GPTJiangConfig()
|
75 |
+
|
76 |
+
>>> # Initializing a model (with random weights) from the gpt-jiang style configuration
|
77 |
+
>>> model = GPTJiangModel(configuration) # doctest: +SKIP
|
78 |
+
|
79 |
+
>>> # Accessing the model configuration
|
80 |
+
>>> configuration = model.config # doctest: +SKIP
|
81 |
+
```"""
|
82 |
+
model_type = "gpt_jiang"
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
vocab_size=57000,
|
87 |
+
hidden_size=5120,
|
88 |
+
num_hidden_layers=48,
|
89 |
+
num_attention_heads=40,
|
90 |
+
intermediate_size=12288,
|
91 |
+
hidden_act="gelu",
|
92 |
+
rotary_pct=1.0,
|
93 |
+
rotary_emb_base=10000,
|
94 |
+
max_position_embeddings=4096,
|
95 |
+
initializer_range=0.02,
|
96 |
+
layer_norm_eps=1e-5,
|
97 |
+
use_cache=True,
|
98 |
+
bos_token_id=0,
|
99 |
+
eos_token_id=2,
|
100 |
+
tie_word_embeddings=False,
|
101 |
+
use_parallel_residual=True,
|
102 |
+
gated=True,
|
103 |
+
mlp_bias=False,
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
107 |
+
self.vocab_size = vocab_size
|
108 |
+
self.max_position_embeddings = max_position_embeddings
|
109 |
+
self.hidden_size = hidden_size
|
110 |
+
self.num_hidden_layers = num_hidden_layers
|
111 |
+
self.num_attention_heads = num_attention_heads
|
112 |
+
self.intermediate_size = intermediate_size
|
113 |
+
self.hidden_act = hidden_act
|
114 |
+
self.rotary_pct = rotary_pct
|
115 |
+
self.rotary_emb_base = rotary_emb_base
|
116 |
+
self.initializer_range = initializer_range
|
117 |
+
self.layer_norm_eps = layer_norm_eps
|
118 |
+
self.use_cache = use_cache
|
119 |
+
self.tie_word_embeddings = tie_word_embeddings
|
120 |
+
self.use_parallel_residual = use_parallel_residual
|
121 |
+
self.gated = gated
|
122 |
+
self.mlp_bias = mlp_bias
|
modeling_gpt_jiang.py
ADDED
@@ -0,0 +1,807 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 EleutherAI The HuggingFace Inc. team. and JIANG.ai All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPTJiang model."""
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.file_utils import (
|
27 |
+
add_code_sample_docstrings,
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
replace_return_docstrings,
|
31 |
+
)
|
32 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import logging
|
35 |
+
from .configuration_gpt_jiang import GPTJiangConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "GPTJiangConfig"
|
41 |
+
GPT_JIANG_PRETRAINED_MODEL_ARCHIVE_LIST = []
|
42 |
+
|
43 |
+
|
44 |
+
class RMSNorm(torch.nn.Module):
|
45 |
+
def __init__(self, dim: int, eps: float=1e-5):
|
46 |
+
super().__init__()
|
47 |
+
self.eps = eps
|
48 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
49 |
+
|
50 |
+
def _norm(self, x):
|
51 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
output = self._norm(x.float()).type_as(x)
|
55 |
+
return output * self.weight
|
56 |
+
|
57 |
+
|
58 |
+
class GPTJiangPreTrainedModel(PreTrainedModel):
|
59 |
+
"""
|
60 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
61 |
+
models.
|
62 |
+
"""
|
63 |
+
config_class = GPTJiangConfig
|
64 |
+
base_model_prefix = "gpt_jiang"
|
65 |
+
supports_gradient_checkpointing = True
|
66 |
+
_no_split_modules = ["GPTJiangLayer"]
|
67 |
+
|
68 |
+
def _init_weights(self, module):
|
69 |
+
"""Initialize the weights"""
|
70 |
+
if isinstance(module, GatedLinear):
|
71 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
72 |
+
if module.bias is not None:
|
73 |
+
module.bias.data.fill_(1.0)
|
74 |
+
elif isinstance(module, nn.Linear):
|
75 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
76 |
+
if module.bias is not None:
|
77 |
+
module.bias.data.zero_()
|
78 |
+
elif isinstance(module, nn.Embedding):
|
79 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
80 |
+
if module.padding_idx is not None:
|
81 |
+
module.weight.data[module.padding_idx].zero_()
|
82 |
+
elif isinstance(module, RMSNorm):
|
83 |
+
# module.bias.data.zero_()
|
84 |
+
module.weight.data.fill_(1.0)
|
85 |
+
|
86 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
87 |
+
if isinstance(module, GPTJiangModel):
|
88 |
+
module.gradient_checkpointing = value
|
89 |
+
|
90 |
+
|
91 |
+
class GPTJiangAttention(nn.Module):
|
92 |
+
def __init__(self, config):
|
93 |
+
super().__init__()
|
94 |
+
self.max_position_embeddings = config.max_position_embeddings
|
95 |
+
self.num_attention_heads = config.num_attention_heads
|
96 |
+
self.hidden_size = config.hidden_size
|
97 |
+
self.head_size = self.hidden_size // self.num_attention_heads
|
98 |
+
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
99 |
+
self.rotary_emb = RotaryEmbedding(
|
100 |
+
self.rotary_ndims,
|
101 |
+
config.max_position_embeddings,
|
102 |
+
base=config.rotary_emb_base
|
103 |
+
)
|
104 |
+
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
105 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
106 |
+
self.causal_mask_cached = None
|
107 |
+
|
108 |
+
def causal_mask(self, x, seq_len):
|
109 |
+
if self.causal_mask_cached is None or seq_len > self.causal_mask_cached.shape[2]:
|
110 |
+
cache_size = max(self.max_position_embeddings, seq_len)
|
111 |
+
self.causal_mask_cached = torch.ones(
|
112 |
+
cache_size,
|
113 |
+
cache_size,
|
114 |
+
dtype=torch.bool
|
115 |
+
).tril().view(1, 1, cache_size, cache_size)
|
116 |
+
return self.causal_mask_cached[:, :, :seq_len, :seq_len].to(x.device)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self,
|
120 |
+
hidden_states,
|
121 |
+
attention_mask,
|
122 |
+
head_mask=None,
|
123 |
+
layer_past=None,
|
124 |
+
use_cache=False,
|
125 |
+
output_attentions=False
|
126 |
+
):
|
127 |
+
has_layer_past = layer_past is not None
|
128 |
+
|
129 |
+
# Compute QKV
|
130 |
+
# Attention heads [batch, seq_len, hidden_size]
|
131 |
+
# --> [batch, seq_len, (np * 3 * head_size)]
|
132 |
+
qkv = self.query_key_value(hidden_states)
|
133 |
+
|
134 |
+
# [batch, seq_len, (num_heads * 3 * head_size)]
|
135 |
+
# --> [batch, seq_len, num_heads, 3 * head_size]
|
136 |
+
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
137 |
+
qkv = qkv.view(*new_qkv_shape)
|
138 |
+
|
139 |
+
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
140 |
+
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
141 |
+
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
|
142 |
+
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
|
143 |
+
|
144 |
+
# Compute rotary embeddings on rotary_ndims
|
145 |
+
# query_rot = query[..., : self.rotary_ndims]
|
146 |
+
# query_pass = query[..., self.rotary_ndims :]
|
147 |
+
# key_rot = key[..., : self.rotary_ndims]
|
148 |
+
# key_pass = key[..., self.rotary_ndims :]
|
149 |
+
|
150 |
+
# Compute token offset for rotary embeddings (when decoding)
|
151 |
+
seq_len = key.shape[-2]
|
152 |
+
offset = 0
|
153 |
+
if has_layer_past:
|
154 |
+
offset = layer_past[0].shape[-2]
|
155 |
+
seq_len += offset
|
156 |
+
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
157 |
+
|
158 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=offset)
|
159 |
+
# query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, offset=offset)
|
160 |
+
# query = torch.cat((query, query_pass), dim=-1)
|
161 |
+
# key = torch.cat((key, key_pass), dim=-1)
|
162 |
+
|
163 |
+
# Cache QKV values
|
164 |
+
if has_layer_past:
|
165 |
+
past_key = layer_past[0]
|
166 |
+
past_value = layer_past[1]
|
167 |
+
key = torch.cat((past_key, key), dim=-2)
|
168 |
+
value = torch.cat((past_value, value), dim=-2)
|
169 |
+
present = (key, value,) if use_cache else None
|
170 |
+
|
171 |
+
query = query.type_as(hidden_states)
|
172 |
+
key = key.type_as(hidden_states)
|
173 |
+
value = value.type_as(hidden_states)
|
174 |
+
|
175 |
+
if output_attentions:
|
176 |
+
# Use custom attention method to get attn_weights
|
177 |
+
attn_output, attn_weights = self._attn(
|
178 |
+
query, key, value,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
head_mask=head_mask
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
if layer_past is not None and attention_mask is None:
|
184 |
+
# Must calculate attention_mask, or scaled_dot_product_attention will wrong
|
185 |
+
batch_size = query.size(0)
|
186 |
+
attention_mask = torch.ones(batch_size, seq_len, dtype=torch.bool)[:, None, None, :]
|
187 |
+
|
188 |
+
if attention_mask is not None:
|
189 |
+
attn_mask = attention_mask.transpose(2, 3) * attention_mask
|
190 |
+
query_length = query.size(-2)
|
191 |
+
key_length = key.size(-2)
|
192 |
+
if query_length > 1:
|
193 |
+
causal_mask = self.causal_mask(query, seq_len)
|
194 |
+
causal_mask = causal_mask[:, :, -query_length:, :]
|
195 |
+
attn_mask = (attn_mask[:, :, -query_length:, :] * causal_mask).to(torch.bool)
|
196 |
+
else:
|
197 |
+
attn_mask = attn_mask[:, :, -query_length:, :].to(torch.bool)
|
198 |
+
|
199 |
+
attn_output = F.scaled_dot_product_attention(
|
200 |
+
query,
|
201 |
+
key,
|
202 |
+
value,
|
203 |
+
attn_mask=attn_mask,
|
204 |
+
is_causal=False
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
attn_output = F.scaled_dot_product_attention(
|
208 |
+
query,
|
209 |
+
key,
|
210 |
+
value,
|
211 |
+
attn_mask=None,
|
212 |
+
is_causal=True
|
213 |
+
)
|
214 |
+
attn_weights = None
|
215 |
+
|
216 |
+
# Reshape outputs
|
217 |
+
# attn_output == [bs, num_attention_heads, seq_len, attn_head_size]
|
218 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
219 |
+
# tensor [bs, seq_len, num_attention_heads * attn_head_size]
|
220 |
+
attn_output = self.dense(attn_output)
|
221 |
+
|
222 |
+
outputs = (attn_output, present)
|
223 |
+
if output_attentions:
|
224 |
+
outputs += (attn_weights,)
|
225 |
+
|
226 |
+
return outputs
|
227 |
+
|
228 |
+
@classmethod
|
229 |
+
def _calculate_attn_output_loss(self, attn_output):
|
230 |
+
bs, num_attention_heads, seq_len, attn_head_size = attn_output.size()
|
231 |
+
attn_output_out = attn_output.view(bs, num_attention_heads, -1)
|
232 |
+
attn_output_out_norm = attn_output_out / torch.max(
|
233 |
+
attn_output_out.norm(dim=2, keepdim=True),
|
234 |
+
1e-8 * torch.ones_like(attn_output_out)
|
235 |
+
)
|
236 |
+
sim = torch.bmm(attn_output_out_norm, attn_output_out_norm.permute(0, 2, 1))
|
237 |
+
attn_output_loss = sim.sum() / sim.numel()
|
238 |
+
return attn_output_loss
|
239 |
+
|
240 |
+
@classmethod
|
241 |
+
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
242 |
+
"""
|
243 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
244 |
+
"""
|
245 |
+
# tensor: [bs, seq_len, hidden_size]
|
246 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
247 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
248 |
+
tensor = tensor.view(new_shape)
|
249 |
+
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
250 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
251 |
+
return tensor
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
255 |
+
"""
|
256 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
257 |
+
"""
|
258 |
+
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
259 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
260 |
+
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
261 |
+
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
262 |
+
# -> [bs, seq_len, hidden_size]
|
263 |
+
return tensor
|
264 |
+
|
265 |
+
def create_upper_triangular_matrix(self, q, k):
|
266 |
+
size = max(q, k)
|
267 |
+
# 创建一个单位矩阵
|
268 |
+
identity = torch.eye(size)
|
269 |
+
# 创建一个矩阵,其中每个元素都是它的行索引
|
270 |
+
row_indices = torch.arange(size).view(-1, 1).expand(size, size)
|
271 |
+
# 创建一个矩阵,其中每个元素都是它的列索引
|
272 |
+
col_indices = torch.arange(size).view(1, -1).expand(size, size)
|
273 |
+
# 比较行和列索引,如果行索引小于列索引,则0,否则1
|
274 |
+
upper_triangular_matrix = torch.where(row_indices < col_indices, 0, 1)
|
275 |
+
return upper_triangular_matrix[-q:, -k:].to(torch.bool)
|
276 |
+
|
277 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
278 |
+
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
279 |
+
# compute causal mask from causal mask buffer
|
280 |
+
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
281 |
+
key_length = key.size(-2)
|
282 |
+
|
283 |
+
# 避免使用tril
|
284 |
+
# causal_mask = torch.ones(
|
285 |
+
# query_length, key_length,
|
286 |
+
# dtype=torch.bool,
|
287 |
+
# device=query.device
|
288 |
+
# ).tril(
|
289 |
+
# diagonal=key_length - query_length
|
290 |
+
# ).view(1, 1, query_length, key_length)
|
291 |
+
causal_mask = self.create_upper_triangular_matrix(
|
292 |
+
query_length, key_length
|
293 |
+
).view(1, 1, query_length, key_length).to(query.device)
|
294 |
+
|
295 |
+
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
296 |
+
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
297 |
+
attn_scores = torch.zeros(
|
298 |
+
batch_size * num_attention_heads,
|
299 |
+
query_length,
|
300 |
+
key_length,
|
301 |
+
dtype=query.dtype,
|
302 |
+
device=key.device,
|
303 |
+
)
|
304 |
+
norm_factor = self.head_size ** 0.5
|
305 |
+
attn_scores = torch.baddbmm(
|
306 |
+
attn_scores,
|
307 |
+
query,
|
308 |
+
key.transpose(1, 2),
|
309 |
+
beta=1.0,
|
310 |
+
alpha=(torch.tensor(1.0, dtype=query.dtype, device=query.device) / norm_factor),
|
311 |
+
)
|
312 |
+
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
313 |
+
|
314 |
+
mask_value = torch.finfo(attn_scores.dtype).min
|
315 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
316 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
317 |
+
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device)
|
318 |
+
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
|
319 |
+
|
320 |
+
if attention_mask is not None:
|
321 |
+
# Apply the attention mask
|
322 |
+
attn_scores = attn_scores + attention_mask
|
323 |
+
|
324 |
+
attn_weights = nn.functional.softmax(attn_scores.float(), dim=-1).type_as(value)
|
325 |
+
|
326 |
+
# Mask heads if we want to
|
327 |
+
if head_mask is not None:
|
328 |
+
attn_weights = attn_weights * head_mask
|
329 |
+
|
330 |
+
attn_output = torch.matmul(attn_weights, value)
|
331 |
+
return attn_output, attn_weights
|
332 |
+
|
333 |
+
|
334 |
+
class RotaryEmbedding(torch.nn.Module):
|
335 |
+
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
|
336 |
+
super().__init__()
|
337 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
338 |
+
self.register_buffer("inv_freq", inv_freq)
|
339 |
+
|
340 |
+
# Build here to make `torch.jit.trace` work.
|
341 |
+
self.max_seq_len_cached = max_position_embeddings
|
342 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
343 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
344 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
345 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
346 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
347 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
348 |
+
|
349 |
+
def forward(self, x, seq_len=None):
|
350 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
351 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
352 |
+
if seq_len > self.max_seq_len_cached:
|
353 |
+
self.max_seq_len_cached = seq_len
|
354 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
355 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
356 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
357 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
358 |
+
self.cos_cached = emb.cos()[None, None, :, :]
|
359 |
+
self.sin_cached = emb.sin()[None, None, :, :]
|
360 |
+
return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device)
|
361 |
+
|
362 |
+
|
363 |
+
def rotate_half(x):
|
364 |
+
"""Rotates half the hidden dims of the input."""
|
365 |
+
x1 = x[..., : x.shape[-1] // 2]
|
366 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
367 |
+
return torch.cat((-x2, x1), dim=-1)
|
368 |
+
|
369 |
+
|
370 |
+
def apply_rotary_pos_emb(q, k, cos, sin, offset: int = 0):
|
371 |
+
cos = cos[..., offset : q.shape[-2] + offset, :]
|
372 |
+
sin = sin[..., offset : q.shape[-2] + offset, :]
|
373 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
374 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
375 |
+
return q_embed, k_embed
|
376 |
+
|
377 |
+
|
378 |
+
class GatedLinear(nn.Linear):
|
379 |
+
pass
|
380 |
+
|
381 |
+
|
382 |
+
class GPTJiangMLP(nn.Module):
|
383 |
+
def __init__(self, config):
|
384 |
+
super().__init__()
|
385 |
+
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias)
|
386 |
+
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.mlp_bias)
|
387 |
+
self.gated = config.gated
|
388 |
+
if config.gated:
|
389 |
+
self.dense_h_to_4h_gate = GatedLinear(config.hidden_size, config.intermediate_size, bias=config.mlp_bias)
|
390 |
+
self.act = ACT2FN[config.hidden_act]
|
391 |
+
|
392 |
+
def forward(self, hidden_states):
|
393 |
+
|
394 |
+
if self.gated:
|
395 |
+
# pseudocode:
|
396 |
+
# g is activation function, W and V are weights, * is element-wised product
|
397 |
+
# x = g(Wx) * Vx
|
398 |
+
hidden_states = self.act(self.dense_h_to_4h(hidden_states)) * self.dense_h_to_4h_gate(hidden_states)
|
399 |
+
else:
|
400 |
+
# pseudocode:
|
401 |
+
# x = g(Wx)
|
402 |
+
hidden_states = self.act(self.dense_h_to_4h(hidden_states))
|
403 |
+
hidden_states = self.dense_4h_to_h(hidden_states)
|
404 |
+
return hidden_states
|
405 |
+
|
406 |
+
|
407 |
+
class GPTJiangLayer(nn.Module):
|
408 |
+
def __init__(self, config):
|
409 |
+
super().__init__()
|
410 |
+
self.use_parallel_residual = config.use_parallel_residual
|
411 |
+
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
412 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
413 |
+
self.attention = GPTJiangAttention(config)
|
414 |
+
self.mlp = GPTJiangMLP(config)
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states,
|
419 |
+
attention_mask=None,
|
420 |
+
head_mask=None,
|
421 |
+
use_cache=False,
|
422 |
+
layer_past=None,
|
423 |
+
output_attentions=False,
|
424 |
+
):
|
425 |
+
attention_layer_outputs = self.attention(
|
426 |
+
self.input_layernorm(hidden_states),
|
427 |
+
attention_mask=attention_mask,
|
428 |
+
layer_past=layer_past,
|
429 |
+
head_mask=head_mask,
|
430 |
+
use_cache=use_cache,
|
431 |
+
output_attentions=output_attentions,
|
432 |
+
)
|
433 |
+
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights), (attentions_output_loss)
|
434 |
+
outputs = attention_layer_outputs[1:]
|
435 |
+
|
436 |
+
# Default True in multiple models, faster
|
437 |
+
if self.use_parallel_residual:
|
438 |
+
# pseudocode:
|
439 |
+
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
440 |
+
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
441 |
+
hidden_states = mlp_output + attn_output + hidden_states
|
442 |
+
else:
|
443 |
+
# pseudocode:
|
444 |
+
# x = x + attn(ln1(x))
|
445 |
+
# x = x + mlp(ln2(x))
|
446 |
+
attn_output = attn_output + hidden_states
|
447 |
+
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
448 |
+
hidden_states = mlp_output + attn_output
|
449 |
+
|
450 |
+
if use_cache:
|
451 |
+
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights), (attentions_output_loss)
|
452 |
+
else:
|
453 |
+
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights), (attentions_output_loss)
|
454 |
+
|
455 |
+
return outputs
|
456 |
+
|
457 |
+
|
458 |
+
GPT_JIANG_START_DOCSTRING = r"""
|
459 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
460 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
461 |
+
behavior.
|
462 |
+
|
463 |
+
Parameters:
|
464 |
+
config ([`~GPTJiangConfig`]): Model configuration class with all the parameters of the model.
|
465 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
466 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
467 |
+
"""
|
468 |
+
|
469 |
+
GPT_JIANG_INPUTS_DOCSTRING = r"""
|
470 |
+
Args:
|
471 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
472 |
+
Indices of input sequence tokens in the vocabulary.
|
473 |
+
|
474 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
475 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
476 |
+
|
477 |
+
[What are input IDs?](../glossary#input-ids)
|
478 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
479 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
480 |
+
|
481 |
+
- 1 for tokens that are **not masked**,
|
482 |
+
- 0 for tokens that are **masked**.
|
483 |
+
|
484 |
+
[What are attention masks?](../glossary#attention-mask)
|
485 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
486 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
487 |
+
|
488 |
+
- 1 indicates the head is **not masked**,
|
489 |
+
- 0 indicates the head is **masked**.
|
490 |
+
|
491 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
492 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
493 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
494 |
+
model's internal embedding lookup matrix.
|
495 |
+
output_attentions (`bool`, *optional*):
|
496 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
497 |
+
tensors for more detail.
|
498 |
+
output_hidden_states (`bool`, *optional*):
|
499 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
500 |
+
more detail.
|
501 |
+
return_dict (`bool`, *optional*):
|
502 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
503 |
+
"""
|
504 |
+
|
505 |
+
|
506 |
+
@add_start_docstrings(
|
507 |
+
"The bare GPTJiang Model transformer outputting raw hidden-states without any specific head on top.",
|
508 |
+
GPT_JIANG_START_DOCSTRING,
|
509 |
+
)
|
510 |
+
class GPTJiangModel(GPTJiangPreTrainedModel):
|
511 |
+
def __init__(self, config):
|
512 |
+
super().__init__(config)
|
513 |
+
self.config = config
|
514 |
+
|
515 |
+
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
516 |
+
self.layers = nn.ModuleList([GPTJiangLayer(config) for _ in range(config.num_hidden_layers)])
|
517 |
+
self.final_layer_norm = RMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
518 |
+
|
519 |
+
self.gradient_checkpointing = False
|
520 |
+
|
521 |
+
# Initialize weights and apply final processing
|
522 |
+
self.post_init()
|
523 |
+
|
524 |
+
def get_input_embeddings(self):
|
525 |
+
return self.embed_in
|
526 |
+
|
527 |
+
def set_input_embeddings(self, value):
|
528 |
+
self.embed_in = value
|
529 |
+
|
530 |
+
@add_start_docstrings_to_model_forward(GPT_JIANG_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
531 |
+
@add_code_sample_docstrings(
|
532 |
+
output_type=BaseModelOutputWithPast,
|
533 |
+
config_class=_CONFIG_FOR_DOC,
|
534 |
+
)
|
535 |
+
def forward(
|
536 |
+
self,
|
537 |
+
input_ids: Optional[torch.LongTensor] = None,
|
538 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
539 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
540 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
541 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
542 |
+
use_cache: Optional[bool] = None,
|
543 |
+
output_attentions: Optional[bool] = None,
|
544 |
+
output_hidden_states: Optional[bool] = None,
|
545 |
+
return_dict: Optional[bool] = None,
|
546 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
547 |
+
r"""
|
548 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
549 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
550 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
551 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
552 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
553 |
+
use_cache (`bool`, *optional*):
|
554 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`).
|
555 |
+
"""
|
556 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
557 |
+
output_hidden_states = (
|
558 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
559 |
+
)
|
560 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
561 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
562 |
+
|
563 |
+
if input_ids is not None and inputs_embeds is not None:
|
564 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
565 |
+
elif input_ids is not None:
|
566 |
+
input_shape = input_ids.size()
|
567 |
+
elif inputs_embeds is not None:
|
568 |
+
input_shape = inputs_embeds.size()[:-1]
|
569 |
+
else:
|
570 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
571 |
+
|
572 |
+
batch_size, seq_length = input_shape
|
573 |
+
|
574 |
+
if past_key_values is None:
|
575 |
+
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
576 |
+
|
577 |
+
# Attention mask.
|
578 |
+
if attention_mask is not None:
|
579 |
+
assert batch_size > 0, "batch_size has to be defined and > 0"
|
580 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
581 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
582 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
583 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
584 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
585 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
586 |
+
attention_mask = attention_mask[:, None, None, :]
|
587 |
+
|
588 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
589 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
590 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
591 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
592 |
+
# effectively the same as removing these entirely.
|
593 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
594 |
+
# attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
595 |
+
|
596 |
+
# Prepare head mask if needed
|
597 |
+
# 1.0 in head_mask indicate we keep the head
|
598 |
+
# attention_probs has shape bsz x n_heads x N x N
|
599 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
600 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
601 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
602 |
+
|
603 |
+
if inputs_embeds is None:
|
604 |
+
inputs_embeds = self.embed_in(input_ids)
|
605 |
+
|
606 |
+
hidden_states = inputs_embeds
|
607 |
+
|
608 |
+
if self.gradient_checkpointing and self.training:
|
609 |
+
if use_cache:
|
610 |
+
logger.warning(
|
611 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
612 |
+
)
|
613 |
+
use_cache = False
|
614 |
+
|
615 |
+
presents = () if use_cache else None
|
616 |
+
all_attentions = () if output_attentions else None
|
617 |
+
all_hidden_states = () if output_hidden_states else None
|
618 |
+
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
619 |
+
|
620 |
+
if output_hidden_states:
|
621 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
622 |
+
|
623 |
+
if self.gradient_checkpointing and self.training:
|
624 |
+
|
625 |
+
def create_custom_forward(module):
|
626 |
+
def custom_forward(*inputs):
|
627 |
+
# None for layer_past
|
628 |
+
return module(*inputs, use_cache, None, output_attentions)
|
629 |
+
|
630 |
+
return custom_forward
|
631 |
+
|
632 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
633 |
+
create_custom_forward(layer),
|
634 |
+
hidden_states,
|
635 |
+
attention_mask,
|
636 |
+
head_mask[i],
|
637 |
+
)
|
638 |
+
else:
|
639 |
+
outputs = layer(
|
640 |
+
hidden_states,
|
641 |
+
attention_mask=attention_mask,
|
642 |
+
head_mask=head_mask[i],
|
643 |
+
layer_past=layer_past,
|
644 |
+
use_cache=use_cache,
|
645 |
+
output_attentions=output_attentions,
|
646 |
+
)
|
647 |
+
hidden_states = outputs[0]
|
648 |
+
if use_cache is True:
|
649 |
+
presents = presents + (outputs[1],)
|
650 |
+
if output_attentions:
|
651 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
652 |
+
|
653 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
654 |
+
# Add last hidden state
|
655 |
+
if output_hidden_states:
|
656 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
657 |
+
|
658 |
+
if not return_dict:
|
659 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
660 |
+
|
661 |
+
ret = BaseModelOutputWithPast(
|
662 |
+
last_hidden_state=hidden_states,
|
663 |
+
past_key_values=presents,
|
664 |
+
hidden_states=all_hidden_states,
|
665 |
+
attentions=all_attentions,
|
666 |
+
)
|
667 |
+
return ret
|
668 |
+
|
669 |
+
|
670 |
+
@add_start_docstrings(
|
671 |
+
"""GPTJiang Model with a `language modeling` head on top for CLM fine-tuning.""", GPT_JIANG_START_DOCSTRING
|
672 |
+
)
|
673 |
+
class GPTJiangForCausalLM(GPTJiangPreTrainedModel):
|
674 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
675 |
+
|
676 |
+
def __init__(self, config):
|
677 |
+
super().__init__(config)
|
678 |
+
|
679 |
+
self.gpt_kdf = GPTJiangModel(config)
|
680 |
+
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
681 |
+
|
682 |
+
# Initialize weights and apply final processing
|
683 |
+
self.post_init()
|
684 |
+
|
685 |
+
def get_output_embeddings(self):
|
686 |
+
return self.embed_out
|
687 |
+
|
688 |
+
def set_output_embeddings(self, new_embeddings):
|
689 |
+
self.embed_out = new_embeddings
|
690 |
+
|
691 |
+
@add_start_docstrings_to_model_forward(GPT_JIANG_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
692 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
693 |
+
def forward(
|
694 |
+
self,
|
695 |
+
input_ids: Optional[torch.LongTensor] = None,
|
696 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
697 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
698 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
699 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
700 |
+
labels: Optional[torch.LongTensor] = None,
|
701 |
+
use_cache: Optional[bool] = None,
|
702 |
+
output_attentions: Optional[bool] = None,
|
703 |
+
output_hidden_states: Optional[bool] = None,
|
704 |
+
return_dict: Optional[bool] = None,
|
705 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
706 |
+
r"""
|
707 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
708 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
709 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
710 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
711 |
+
only required when the model is used as a decoder in a Sequence to Sequence model.
|
712 |
+
|
713 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
714 |
+
`past_key_values` input) to speed up sequential decoding.
|
715 |
+
|
716 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
717 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
718 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
719 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
720 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
721 |
+
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
722 |
+
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
723 |
+
use_cache (`bool`, *optional*):
|
724 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
725 |
+
`past_key_values`).
|
726 |
+
|
727 |
+
Returns:
|
728 |
+
|
729 |
+
Example:
|
730 |
+
|
731 |
+
```python
|
732 |
+
>>> from transformers import AutoTokenizer, GPTJiangForCausalLM, GPTJiangConfig
|
733 |
+
>>> import torch
|
734 |
+
|
735 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
736 |
+
>>> config = GPTJiangConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
737 |
+
>>> config.is_decoder = True
|
738 |
+
>>> model = GPTJiangForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
739 |
+
|
740 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
741 |
+
>>> outputs = model(**inputs)
|
742 |
+
|
743 |
+
>>> prediction_logits = outputs.logits
|
744 |
+
```"""
|
745 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
746 |
+
|
747 |
+
outputs = self.gpt_kdf(
|
748 |
+
input_ids,
|
749 |
+
attention_mask=attention_mask,
|
750 |
+
head_mask=head_mask,
|
751 |
+
inputs_embeds=inputs_embeds,
|
752 |
+
past_key_values=past_key_values,
|
753 |
+
use_cache=use_cache,
|
754 |
+
output_attentions=output_attentions,
|
755 |
+
output_hidden_states=output_hidden_states,
|
756 |
+
return_dict=return_dict,
|
757 |
+
)
|
758 |
+
|
759 |
+
hidden_states = outputs[0]
|
760 |
+
lm_logits = self.embed_out(hidden_states)
|
761 |
+
|
762 |
+
lm_loss = None
|
763 |
+
attn_output_loss = None
|
764 |
+
if labels is not None:
|
765 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
766 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
767 |
+
labels = labels[:, 1:].contiguous()
|
768 |
+
loss_fct = CrossEntropyLoss()
|
769 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
770 |
+
|
771 |
+
if not return_dict:
|
772 |
+
output = (lm_logits,) + outputs[1:]
|
773 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
774 |
+
|
775 |
+
ret = CausalLMOutputWithPast(
|
776 |
+
loss=lm_loss,
|
777 |
+
logits=lm_logits,
|
778 |
+
past_key_values=outputs.past_key_values,
|
779 |
+
hidden_states=outputs.hidden_states,
|
780 |
+
attentions=outputs.attentions,
|
781 |
+
)
|
782 |
+
return ret
|
783 |
+
|
784 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
|
785 |
+
input_shape = input_ids.shape
|
786 |
+
|
787 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
788 |
+
if attention_mask is None:
|
789 |
+
attention_mask = input_ids.new_ones(input_shape)
|
790 |
+
|
791 |
+
# cut decoder_input_ids if past is used
|
792 |
+
if past_key_values and past_key_values[0] is not None:
|
793 |
+
input_ids = input_ids[:, -1:]
|
794 |
+
|
795 |
+
return {
|
796 |
+
"input_ids": input_ids,
|
797 |
+
"attention_mask": attention_mask,
|
798 |
+
"past_key_values": past_key_values,
|
799 |
+
}
|
800 |
+
|
801 |
+
def _reorder_cache(self, past_key_values, beam_idx):
|
802 |
+
reordered_past = ()
|
803 |
+
for layer_past in past_key_values:
|
804 |
+
reordered_past += (
|
805 |
+
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
806 |
+
)
|
807 |
+
return reordered_past
|