|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" GPTJiang model configuration""" |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
GPT_JIANG_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class GPTJiangConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`GPTJiangModel`]. It is used to instantiate an |
|
GPTJiang model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the GPTJiang |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50432): |
|
Vocabulary size of the GPTJiang model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`GPTJiangModel`]. |
|
hidden_size (`int`, *optional*, defaults to 6144): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 44): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 24576): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
rotary_pct (`float`, *optional*, defaults to 0.25): |
|
percentage of hidden dimensions to allocate to rotary embeddings |
|
rotary_emb_base (`int`, *optional*, defaults to 10000) |
|
base for computing rotary embeddings frequency |
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
initializer_range (`float`, *optional*, defaults to 1e-5): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
use_parallel_residual (`bool`, *optional*, defaults to `True`): |
|
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training |
|
speedup at large scales (e.g. 20B). |
|
Example: |
|
|
|
```python |
|
>>> from transformers import GPTJiangConfig, GPTJiangModel |
|
|
|
>>> # Initializing a GPTJiang style configuration |
|
>>> configuration = GPTJiangConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the gpt-jiang style configuration |
|
>>> model = GPTJiangModel(configuration) # doctest: +SKIP |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config # doctest: +SKIP |
|
```""" |
|
model_type = "gpt_jiang" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=57000, |
|
hidden_size=5120, |
|
num_hidden_layers=48, |
|
num_attention_heads=40, |
|
intermediate_size=12288, |
|
hidden_act="gelu", |
|
rotary_pct=1.0, |
|
rotary_emb_base=10000, |
|
max_position_embeddings=4096, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
use_cache=True, |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
tie_word_embeddings=False, |
|
use_parallel_residual=True, |
|
gated=True, |
|
mlp_bias=False, |
|
**kwargs, |
|
): |
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.rotary_pct = rotary_pct |
|
self.rotary_emb_base = rotary_emb_base |
|
self.initializer_range = initializer_range |
|
self.layer_norm_eps = layer_norm_eps |
|
self.use_cache = use_cache |
|
self.tie_word_embeddings = tie_word_embeddings |
|
self.use_parallel_residual = use_parallel_residual |
|
self.gated = gated |
|
self.mlp_bias = mlp_bias |
|
|