kattyan's picture
update readme
9ee41db verified
metadata
base_model: llm-jp/llm-jp-3-13b
tags:
  - text-generation-inference
  - transformers
  - unsloth
  - llama
  - trl
license: apache-2.0
language:
  - ja

Uploaded Model

  • Developed by: kattyan
  • License: apache-2.0
  • Finetuned from model: llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Required Libraries and Their Versions

  • torch>=2.3.0
  • transformers>=4.40.1
  • tokenizers>=0.19.1
  • accelerate>=0.29.3
  • flash-attn>=2.5.8

Usage

from unsloth import FastLanguageModel

model_name = "llm-jp/llm-jp-3-13b"  # モデル名
max_seq_length = 512  # 最大シーケンス長
dtype = None  # データ型(None で自動設定)
load_in_4bit = True  # 4bit量子化を使用

# モデルとトークナイザーのロード
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    max_seq_length=max_seq_length,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    token="YOUR_HUGGING_FACE_TOKEN",  # Hugging Face トークンを指定
)

# 推論用にモデルを準備
FastLanguageModel.for_inference(model)

# プロンプトの設定
prompt = "LLMとはなんですか?"

# トークナイザーで入力をエンコード
inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

# モデルで生成を行う
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)

# 出力のデコード
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
print(prediction)