kasumi222's picture
update model card README.md
b58a599
|
raw
history blame
5.48 kB
metadata
license: other
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned-busigt2
    results: []

segformer-b0-finetuned-busigt2

This model is a fine-tuned version of nvidia/mit-b1 on the kasumi222/busigt5 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1923
  • Mean Iou: 0.4456
  • Mean Accuracy: 0.6990
  • Overall Accuracy: 0.6980
  • Per Category Iou: [0.0, 0.6613256012770924, 0.6755795107848668]
  • Per Category Accuracy: [nan, 0.6930571879874813, 0.7049128240257888]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00013
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.44 0.77 20 0.4848 0.2588 0.4242 0.4165 [0.0, 0.3504134718879466, 0.42602074549863] [nan, 0.3783013333071708, 0.47012910920923223]
0.3746 1.54 40 0.3811 0.3111 0.5104 0.5161 [0.0, 0.4842565751294053, 0.4491183491823408] [nan, 0.5445819066586871, 0.4761423846712137]
0.3319 2.31 60 0.3142 0.2399 0.3819 0.3648 [0.0, 0.2677680368240358, 0.45190264244757206] [nan, 0.279724508717023, 0.4840686746895068]
0.2211 3.08 80 0.2530 0.2975 0.4750 0.4814 [0.0, 0.4706420141972068, 0.4218805055880307] [nan, 0.5129361209493069, 0.4371271301147258]
0.2097 3.85 100 0.2433 0.2900 0.4480 0.4460 [0.0, 0.43160250466254296, 0.43845878928113535] [nan, 0.43601714952858417, 0.4600634808054265]
0.1869 4.62 120 0.2363 0.3632 0.5993 0.6166 [0.0, 0.6101054609134765, 0.4795020991617725] [nan, 0.7024776555770306, 0.4960379563233556]
0.1632 5.38 140 0.2386 0.4353 0.6988 0.7093 [0.0, 0.6991547342129519, 0.6066344865447587] [nan, 0.7611584761643136, 0.6364771236719307]
0.1939 6.15 160 0.2166 0.3374 0.5337 0.5229 [0.0, 0.46597040423540376, 0.5460862797699997] [nan, 0.4692625114052214, 0.5981270739467682]
0.2074 6.92 180 0.2209 0.3219 0.5524 0.5826 [0.0, 0.5973031615126874, 0.3684272471225944] [nan, 0.7324595053322476, 0.37233573901062894]
0.1243 7.69 200 0.2214 0.3890 0.6490 0.6624 [0.0, 0.6202500066793128, 0.5468835150043967] [nan, 0.728845938760093, 0.5691879104528569]
0.1079 8.46 220 0.2349 0.3889 0.6489 0.6659 [0.0, 0.6357100818960788, 0.5310789782806924] [nan, 0.7502934453088975, 0.5474674308445788]
0.1355 9.23 240 0.1988 0.4417 0.6835 0.6772 [0.0, 0.6347203785731718, 0.6904229863937434] [nan, 0.6460698342931706, 0.7208882026363698]
0.1258 10.0 260 0.1985 0.4181 0.6597 0.6552 [0.0, 0.5971057628808589, 0.6571229098113397] [nan, 0.6326629842926801, 0.6867490977333476]
0.1098 10.77 280 0.1959 0.4578 0.7091 0.7047 [0.0, 0.6732406203240918, 0.7002946319094014] [nan, 0.6828090692358256, 0.7353112530851077]
0.097 11.54 300 0.1968 0.4401 0.6784 0.6719 [0.0, 0.6352861327900514, 0.6850189737146176] [nan, 0.6398854081842887, 0.7169096389721925]
0.0844 12.31 320 0.1959 0.4164 0.6610 0.6637 [0.0, 0.6274020120203341, 0.6218360931423603] [nan, 0.677014333787907, 0.645067517189047]
0.1543 13.08 340 0.2004 0.4261 0.6663 0.6626 [0.0, 0.618565945734453, 0.6597620117886153] [nan, 0.6440009026067676, 0.6886109003283072]
0.0871 13.85 360 0.1967 0.4270 0.6699 0.6664 [0.0, 0.619536460193106, 0.6615374800234315] [nan, 0.6488875371589471, 0.6909044252641271]
0.1012 14.62 380 0.1923 0.4456 0.6990 0.6980 [0.0, 0.6613256012770924, 0.6755795107848668] [nan, 0.6930571879874813, 0.7049128240257888]

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1