|
--- |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
language: |
|
- hu |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:457856 |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Emberek várnak a lámpánál kerékpárral. |
|
sentences: |
|
- Az emberek piros lámpánál haladnak. |
|
- Az emberek a kerékpárjukon vannak. |
|
- Egy fekete kutya úszik a vízben egy teniszlabdával a szájában |
|
- source_sentence: A kutya a vízben van. |
|
sentences: |
|
- Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig |
|
a tetőn. |
|
- A macska a vízben van, és dühös. |
|
- Egy kutya van a vízben, a szájában egy faág. |
|
- source_sentence: A nő feketét visel. |
|
sentences: |
|
- Egy barna kutya fröcsköl, ahogy úszik a vízben. |
|
- Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre. |
|
- 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:' |
|
- source_sentence: Az emberek alszanak. |
|
sentences: |
|
- Három ember beszélget egy városi utcán. |
|
- A nő fehéret visel. |
|
- Egy apa és a fia ölelgeti alvás közben. |
|
- source_sentence: Az emberek alszanak. |
|
sentences: |
|
- Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében, miközben |
|
egy idősebb nő átmegy az utcán. |
|
- Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy |
|
sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős |
|
elmosódás tesz kivehetetlenné. |
|
- Egy apa és a fia ölelgeti alvás közben. |
|
model-index: |
|
- name: e5-base_hun |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli dev |
|
type: all-nli-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9746 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.0284 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9676 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9658 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9746 |
|
name: Max Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: all nli test |
|
type: all-nli-test |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.9921212121212121 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.008636363636363636 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.9896969696969697 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9895454545454545 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9921212121212121 |
|
name: Max Accuracy |
|
--- |
|
|
|
# e5-base_hun |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- train |
|
- **Language:** hu |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu") |
|
# Run inference |
|
sentences = [ |
|
'Az emberek alszanak.', |
|
'Egy apa és a fia ölelgeti alvás közben.', |
|
'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9746 | |
|
| dot_accuracy | 0.0284 | |
|
| manhattan_accuracy | 0.9676 | |
|
| euclidean_accuracy | 0.9658 | |
|
| **max_accuracy** | **0.9746** | |
|
|
|
#### Triplet |
|
* Dataset: `all-nli-test` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.9921 | |
|
| dot_accuracy | 0.0086 | |
|
| manhattan_accuracy | 0.9897 | |
|
| euclidean_accuracy | 0.9895 | |
|
| **max_accuracy** | **0.9921** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### train |
|
|
|
* Dataset: train |
|
* Size: 457,856 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| |
|
| <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> | |
|
| <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> | |
|
| <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### train |
|
|
|
* Dataset: train |
|
* Size: 5,000 evaluation samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | negative | |
|
|:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| |
|
| <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> | |
|
| <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> | |
|
| <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 128 |
|
- `per_device_eval_batch_size`: 128 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | |
|
|:------:|:----:|:-------------:|:----------:|:------------------------:|:-------------------------:| |
|
| 0 | 0 | - | - | 0.7574 | - | |
|
| 0.0280 | 100 | 2.3495 | - | - | - | |
|
| 0.0559 | 200 | 1.8588 | - | - | - | |
|
| 0.0839 | 300 | 1.7156 | - | - | - | |
|
| 0.1118 | 400 | 1.609 | - | - | - | |
|
| 0.1398 | 500 | 1.5286 | - | - | - | |
|
| 0.1677 | 600 | 1.4425 | - | - | - | |
|
| 0.1957 | 700 | 1.6016 | - | - | - | |
|
| 0.2237 | 800 | 1.5278 | - | - | - | |
|
| 0.2516 | 900 | 1.4255 | - | - | - | |
|
| 0.2796 | 1000 | 1.2084 | - | - | - | |
|
| 0.3075 | 1100 | 1.1248 | - | - | - | |
|
| 0.3355 | 1200 | 1.0773 | - | - | - | |
|
| 0.3634 | 1300 | 1.1373 | - | - | - | |
|
| 0.3914 | 1400 | 1.222 | - | - | - | |
|
| 0.4193 | 1500 | 1.048 | - | - | - | |
|
| 0.4473 | 1600 | 0.9319 | - | - | - | |
|
| 0.4753 | 1700 | 0.8837 | - | - | - | |
|
| 0.5032 | 1800 | 0.8402 | - | - | - | |
|
| 0.5312 | 1900 | 0.7515 | - | - | - | |
|
| 0.5591 | 2000 | 0.9405 | 0.1310 | 0.9746 | - | |
|
| 0.5871 | 2100 | 0.8526 | - | - | - | |
|
| 0.6150 | 2200 | 0.7886 | - | - | - | |
|
| 0.6430 | 2300 | 0.6704 | - | - | - | |
|
| 0.6710 | 2400 | 0.6488 | - | - | - | |
|
| 0.6989 | 2500 | 0.635 | - | - | - | |
|
| 0.7269 | 2600 | 0.7242 | - | - | - | |
|
| 0.7548 | 2700 | 0.7593 | - | - | - | |
|
| 0.7828 | 2800 | 0.62 | - | - | - | |
|
| 0.8107 | 2900 | 0.4302 | - | - | - | |
|
| 0.8387 | 3000 | 0.2952 | - | - | - | |
|
| 0.8666 | 3100 | 0.3354 | - | - | - | |
|
| 0.8946 | 3200 | 0.3221 | - | - | - | |
|
| 0.9226 | 3300 | 0.4317 | - | - | - | |
|
| 0.9505 | 3400 | 0.3185 | - | - | - | |
|
| 0.9785 | 3500 | 0.433 | - | - | - | |
|
| 1.0 | 3577 | - | - | - | 0.9921 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.8 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.44.0 |
|
- PyTorch: 2.3.0.post101 |
|
- Accelerate: 0.33.0 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |