karrelin commited on
Commit
921f041
·
verified ·
1 Parent(s): 23cc8d7

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. cfg.yml +9 -0
  3. merged/README.md +41 -0
  4. merged/config.json +40 -0
  5. merged/mergekit_config.yml +9 -0
  6. merged/model-00001-of-00004.safetensors +3 -0
  7. merged/model-00002-of-00004.safetensors +3 -0
  8. merged/model-00003-of-00004.safetensors +3 -0
  9. merged/model-00004-of-00004.safetensors +3 -0
  10. merged/model.safetensors.index.json +1 -0
  11. merged/special_tokens_map.json +16 -0
  12. merged/tokenizer.json +3 -0
  13. merged/tokenizer_config.json +2063 -0
  14. mergekit/.github/workflows/pre-commit.yml +39 -0
  15. mergekit/.gitignore +160 -0
  16. mergekit/.pre-commit-config.yaml +20 -0
  17. mergekit/LICENSE +165 -0
  18. mergekit/README.md +418 -0
  19. mergekit/docs/evolve.md +176 -0
  20. mergekit/docs/moe.md +124 -0
  21. mergekit/examples/bio-merge.yml +15 -0
  22. mergekit/examples/gradient-slerp.yml +20 -0
  23. mergekit/examples/linear.yml +12 -0
  24. mergekit/examples/mega.yml +37 -0
  25. mergekit/examples/orcamini-platy-44layer.yml +9 -0
  26. mergekit/examples/ties.yml +22 -0
  27. mergekit/mergekit.egg-info/PKG-INFO +458 -0
  28. mergekit/mergekit.egg-info/SOURCES.txt +119 -0
  29. mergekit/mergekit.egg-info/dependency_links.txt +1 -0
  30. mergekit/mergekit.egg-info/entry_points.txt +10 -0
  31. mergekit/mergekit.egg-info/requires.txt +34 -0
  32. mergekit/mergekit.egg-info/top_level.txt +1 -0
  33. mergekit/mergekit/__init__.py +0 -0
  34. mergekit/mergekit/__pycache__/__init__.cpython-310.pyc +0 -0
  35. mergekit/mergekit/__pycache__/architecture.cpython-310.pyc +0 -0
  36. mergekit/mergekit/__pycache__/card.cpython-310.pyc +0 -0
  37. mergekit/mergekit/__pycache__/common.cpython-310.pyc +0 -0
  38. mergekit/mergekit/__pycache__/config.cpython-310.pyc +0 -0
  39. mergekit/mergekit/__pycache__/graph.cpython-310.pyc +0 -0
  40. mergekit/mergekit/__pycache__/merge.cpython-310.pyc +0 -0
  41. mergekit/mergekit/__pycache__/options.cpython-310.pyc +0 -0
  42. mergekit/mergekit/__pycache__/plan.cpython-310.pyc +0 -0
  43. mergekit/mergekit/__pycache__/sparsify.cpython-310.pyc +0 -0
  44. mergekit/mergekit/_data/__init__.py +0 -0
  45. mergekit/mergekit/_data/__pycache__/__init__.cpython-310.pyc +0 -0
  46. mergekit/mergekit/_data/architectures/__init__.py +0 -0
  47. mergekit/mergekit/_data/architectures/__pycache__/__init__.cpython-310.pyc +0 -0
  48. mergekit/mergekit/_data/architectures/baichuan.json +47 -0
  49. mergekit/mergekit/_data/architectures/bert-masked-lm.json +119 -0
  50. mergekit/mergekit/_data/architectures/bert-sequence-classification.json +118 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ merged/tokenizer.json filter=lfs diff=lfs merge=lfs -text
cfg.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ models:
3
+ - model: Sao10K/L3.1-8B-Niitama-v1.1
4
+ - model: akjindal53244/Llama-3.1-Storm-8B
5
+ merge_method: slerp
6
+ base_model: Sao10K/L3.1-8B-Niitama-v1.1
7
+ parameters:
8
+ t: 0.0001
9
+ dtype: bfloat16
merged/README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Sao10K/L3.1-8B-Niitama-v1.1
4
+ - akjindal53244/Llama-3.1-Storm-8B
5
+ library_name: transformers
6
+ tags:
7
+ - mergekit
8
+ - merge
9
+
10
+ ---
11
+ # Untitled Model (1)
12
+
13
+ This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
14
+
15
+ ## Merge Details
16
+ ### Merge Method
17
+
18
+ This model was merged using the SLERP merge method.
19
+
20
+ ### Models Merged
21
+
22
+ The following models were included in the merge:
23
+ * [Sao10K/L3.1-8B-Niitama-v1.1](https://huggingface.co/Sao10K/L3.1-8B-Niitama-v1.1)
24
+ * [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
25
+
26
+ ### Configuration
27
+
28
+ The following YAML configuration was used to produce this model:
29
+
30
+ ```yaml
31
+
32
+ models:
33
+ - model: Sao10K/L3.1-8B-Niitama-v1.1
34
+ - model: akjindal53244/Llama-3.1-Storm-8B
35
+ merge_method: slerp
36
+ base_model: Sao10K/L3.1-8B-Niitama-v1.1
37
+ parameters:
38
+ t: 0.0001
39
+ dtype: bfloat16
40
+
41
+ ```
merged/config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Sao10K/L3.1-8B-Niitama-v1.1",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": [
10
+ 128001,
11
+ 128008,
12
+ 128009
13
+ ],
14
+ "head_dim": 128,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 14336,
19
+ "max_position_embeddings": 131072,
20
+ "mlp_bias": false,
21
+ "model_type": "llama",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 8,
25
+ "pretraining_tp": 1,
26
+ "rms_norm_eps": 1e-05,
27
+ "rope_scaling": {
28
+ "factor": 8.0,
29
+ "high_freq_factor": 4.0,
30
+ "low_freq_factor": 1.0,
31
+ "original_max_position_embeddings": 8192,
32
+ "rope_type": "llama3"
33
+ },
34
+ "rope_theta": 500000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.47.1",
38
+ "use_cache": true,
39
+ "vocab_size": 128256
40
+ }
merged/mergekit_config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+ models:
3
+ - model: Sao10K/L3.1-8B-Niitama-v1.1
4
+ - model: akjindal53244/Llama-3.1-Storm-8B
5
+ merge_method: slerp
6
+ base_model: Sao10K/L3.1-8B-Niitama-v1.1
7
+ parameters:
8
+ t: 0.0001
9
+ dtype: bfloat16
merged/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af9a5b2faf534b3436326bdbeefa80b0fd86f2bbd8e7f0928c00159d377fb203
3
+ size 4953586384
merged/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:847a742e9d75abd2a5a0e5dc5115a49ad2a65eca3d7fc892cda15562279eaf6b
3
+ size 4999819336
merged/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:751446ae7557167d61feda071f498d9dfe92724c3edd0369d155d0d3f41d6032
3
+ size 4915916144
merged/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10b6ad7984b33e5b85099c8efca491933b98159eef931b841690e769d8e52aa
3
+ size 1191234472
merged/model.safetensors.index.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metadata": {"mergekit_version": "0.0.5.2", "total_size": 16060522496}, "weight_map": {"lm_head.weight": "model-00001-of-00004.safetensors", "model.embed_tokens.weight": "model-00001-of-00004.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors", "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors", "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.2.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.24.mlp.down_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00004.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00004.safetensors", "model.layers.25.input_layernorm.weight": "model-00002-of-00004.safetensors", "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.3.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.4.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.5.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.6.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.mlp.up_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors", "model.layers.7.input_layernorm.weight": "model-00003-of-00004.safetensors", "model.layers.7.mlp.down_proj.weight": "model-00003-of-00004.safetensors", "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.mlp.up_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.input_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.8.mlp.down_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.mlp.gate_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.mlp.up_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.input_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.9.mlp.down_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.mlp.gate_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.mlp.up_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.norm.weight": "model-00004-of-00004.safetensors"}}
merged/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
merged/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
merged/tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }
mergekit/.github/workflows/pre-commit.yml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: pre-commit
2
+
3
+ on:
4
+ pull_request:
5
+ push:
6
+
7
+ jobs:
8
+ pre-commit:
9
+ runs-on: ubuntu-latest
10
+ steps:
11
+ - uses: actions/checkout@v3
12
+ - uses: actions/setup-python@v4
13
+ with:
14
+ python-version: "3.11"
15
+ cache: "pip"
16
+ - uses: pre-commit/action@v3.0.0
17
+
18
+ pytest:
19
+ if: github.ref == 'refs/heads/main' || github.event_name == 'pull_request'
20
+ name: PyTest
21
+ needs: [pre-commit]
22
+ runs-on: ubuntu-latest
23
+ strategy:
24
+ fail-fast: false
25
+ matrix:
26
+ python_version: ["3.9", "3.10", "3.11"]
27
+ timeout-minutes: 5
28
+
29
+ steps:
30
+ - uses: actions/checkout@v3
31
+ - name: Setup Python
32
+ uses: actions/setup-python@v4
33
+ with:
34
+ python-version: ${{ matrix.python_version }}
35
+ cache: "pip"
36
+ - name: Install dependencies
37
+ run: pip3 install -U -e .[test]
38
+ - name: Run tests
39
+ run: pytest .
mergekit/.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
mergekit/.pre-commit-config.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v3.2.0
4
+ hooks:
5
+ - id: check-added-large-files
6
+ - id: check-yaml
7
+ args: ["--allow-multiple-documents"]
8
+ - repo: https://github.com/PyCQA/isort
9
+ rev: 5.12.0
10
+ hooks:
11
+ - id: isort
12
+ - repo: https://github.com/psf/black
13
+ rev: 23.11.0
14
+ hooks:
15
+ - id: black
16
+ - repo: https://github.com/pre-commit/pre-commit-hooks
17
+ rev: v3.2.0
18
+ hooks:
19
+ - id: trailing-whitespace
20
+ - id: end-of-file-fixer
mergekit/LICENSE ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU LESSER GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+
9
+ This version of the GNU Lesser General Public License incorporates
10
+ the terms and conditions of version 3 of the GNU General Public
11
+ License, supplemented by the additional permissions listed below.
12
+
13
+ 0. Additional Definitions.
14
+
15
+ As used herein, "this License" refers to version 3 of the GNU Lesser
16
+ General Public License, and the "GNU GPL" refers to version 3 of the GNU
17
+ General Public License.
18
+
19
+ "The Library" refers to a covered work governed by this License,
20
+ other than an Application or a Combined Work as defined below.
21
+
22
+ An "Application" is any work that makes use of an interface provided
23
+ by the Library, but which is not otherwise based on the Library.
24
+ Defining a subclass of a class defined by the Library is deemed a mode
25
+ of using an interface provided by the Library.
26
+
27
+ A "Combined Work" is a work produced by combining or linking an
28
+ Application with the Library. The particular version of the Library
29
+ with which the Combined Work was made is also called the "Linked
30
+ Version".
31
+
32
+ The "Minimal Corresponding Source" for a Combined Work means the
33
+ Corresponding Source for the Combined Work, excluding any source code
34
+ for portions of the Combined Work that, considered in isolation, are
35
+ based on the Application, and not on the Linked Version.
36
+
37
+ The "Corresponding Application Code" for a Combined Work means the
38
+ object code and/or source code for the Application, including any data
39
+ and utility programs needed for reproducing the Combined Work from the
40
+ Application, but excluding the System Libraries of the Combined Work.
41
+
42
+ 1. Exception to Section 3 of the GNU GPL.
43
+
44
+ You may convey a covered work under sections 3 and 4 of this License
45
+ without being bound by section 3 of the GNU GPL.
46
+
47
+ 2. Conveying Modified Versions.
48
+
49
+ If you modify a copy of the Library, and, in your modifications, a
50
+ facility refers to a function or data to be supplied by an Application
51
+ that uses the facility (other than as an argument passed when the
52
+ facility is invoked), then you may convey a copy of the modified
53
+ version:
54
+
55
+ a) under this License, provided that you make a good faith effort to
56
+ ensure that, in the event an Application does not supply the
57
+ function or data, the facility still operates, and performs
58
+ whatever part of its purpose remains meaningful, or
59
+
60
+ b) under the GNU GPL, with none of the additional permissions of
61
+ this License applicable to that copy.
62
+
63
+ 3. Object Code Incorporating Material from Library Header Files.
64
+
65
+ The object code form of an Application may incorporate material from
66
+ a header file that is part of the Library. You may convey such object
67
+ code under terms of your choice, provided that, if the incorporated
68
+ material is not limited to numerical parameters, data structure
69
+ layouts and accessors, or small macros, inline functions and templates
70
+ (ten or fewer lines in length), you do both of the following:
71
+
72
+ a) Give prominent notice with each copy of the object code that the
73
+ Library is used in it and that the Library and its use are
74
+ covered by this License.
75
+
76
+ b) Accompany the object code with a copy of the GNU GPL and this license
77
+ document.
78
+
79
+ 4. Combined Works.
80
+
81
+ You may convey a Combined Work under terms of your choice that,
82
+ taken together, effectively do not restrict modification of the
83
+ portions of the Library contained in the Combined Work and reverse
84
+ engineering for debugging such modifications, if you also do each of
85
+ the following:
86
+
87
+ a) Give prominent notice with each copy of the Combined Work that
88
+ the Library is used in it and that the Library and its use are
89
+ covered by this License.
90
+
91
+ b) Accompany the Combined Work with a copy of the GNU GPL and this license
92
+ document.
93
+
94
+ c) For a Combined Work that displays copyright notices during
95
+ execution, include the copyright notice for the Library among
96
+ these notices, as well as a reference directing the user to the
97
+ copies of the GNU GPL and this license document.
98
+
99
+ d) Do one of the following:
100
+
101
+ 0) Convey the Minimal Corresponding Source under the terms of this
102
+ License, and the Corresponding Application Code in a form
103
+ suitable for, and under terms that permit, the user to
104
+ recombine or relink the Application with a modified version of
105
+ the Linked Version to produce a modified Combined Work, in the
106
+ manner specified by section 6 of the GNU GPL for conveying
107
+ Corresponding Source.
108
+
109
+ 1) Use a suitable shared library mechanism for linking with the
110
+ Library. A suitable mechanism is one that (a) uses at run time
111
+ a copy of the Library already present on the user's computer
112
+ system, and (b) will operate properly with a modified version
113
+ of the Library that is interface-compatible with the Linked
114
+ Version.
115
+
116
+ e) Provide Installation Information, but only if you would otherwise
117
+ be required to provide such information under section 6 of the
118
+ GNU GPL, and only to the extent that such information is
119
+ necessary to install and execute a modified version of the
120
+ Combined Work produced by recombining or relinking the
121
+ Application with a modified version of the Linked Version. (If
122
+ you use option 4d0, the Installation Information must accompany
123
+ the Minimal Corresponding Source and Corresponding Application
124
+ Code. If you use option 4d1, you must provide the Installation
125
+ Information in the manner specified by section 6 of the GNU GPL
126
+ for conveying Corresponding Source.)
127
+
128
+ 5. Combined Libraries.
129
+
130
+ You may place library facilities that are a work based on the
131
+ Library side by side in a single library together with other library
132
+ facilities that are not Applications and are not covered by this
133
+ License, and convey such a combined library under terms of your
134
+ choice, if you do both of the following:
135
+
136
+ a) Accompany the combined library with a copy of the same work based
137
+ on the Library, uncombined with any other library facilities,
138
+ conveyed under the terms of this License.
139
+
140
+ b) Give prominent notice with the combined library that part of it
141
+ is a work based on the Library, and explaining where to find the
142
+ accompanying uncombined form of the same work.
143
+
144
+ 6. Revised Versions of the GNU Lesser General Public License.
145
+
146
+ The Free Software Foundation may publish revised and/or new versions
147
+ of the GNU Lesser General Public License from time to time. Such new
148
+ versions will be similar in spirit to the present version, but may
149
+ differ in detail to address new problems or concerns.
150
+
151
+ Each version is given a distinguishing version number. If the
152
+ Library as you received it specifies that a certain numbered version
153
+ of the GNU Lesser General Public License "or any later version"
154
+ applies to it, you have the option of following the terms and
155
+ conditions either of that published version or of any later version
156
+ published by the Free Software Foundation. If the Library as you
157
+ received it does not specify a version number of the GNU Lesser
158
+ General Public License, you may choose any version of the GNU Lesser
159
+ General Public License ever published by the Free Software Foundation.
160
+
161
+ If the Library as you received it specifies that a proxy can decide
162
+ whether future versions of the GNU Lesser General Public License shall
163
+ apply, that proxy's public statement of acceptance of any version is
164
+ permanent authorization for you to choose that version for the
165
+ Library.
mergekit/README.md ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mergekit
2
+
3
+ `mergekit` is a toolkit for merging pre-trained language models. `mergekit` uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
4
+
5
+ ## Contents
6
+
7
+ - [Why Merge Models?](#why-merge-models)
8
+ - [Features](#features)
9
+ - [Installation](#installation)
10
+ - [Usage](#usage)
11
+ - [Merge Configuration](#merge-configuration)
12
+ - [Parameter Specification](#parameter-specification)
13
+ - [Tokenizer Configuration](#tokenizer-configuration)
14
+ - [Chat Template Configuration](#chat-template-configuration)
15
+ - [Examples](#examples)
16
+ - [Merge Methods](#merge-methods)
17
+ - [LoRA extraction](#lora-extraction)
18
+ - [Mixture of Experts merging](#mixture-of-experts-merging)
19
+ - [Evolutionary merge methods](#evolutionary-merge-methods)
20
+ - [Merge in the Cloud](#-merge-in-the-cloud-)
21
+ - [Citation](#citation)
22
+
23
+ ## Why Merge Models?
24
+
25
+ Model merging is a powerful technique that allows combining the strengths of different models without the computational overhead of ensembling or the need for additional training. By operating directly in the weight space of models, merging can:
26
+
27
+ - Combine multiple specialized models into a single versatile model
28
+ - Transfer capabilities between models without access to training data
29
+ - Find optimal trade-offs between different model behaviors
30
+ - Improve performance while maintaining inference costs
31
+ - Create new capabilities through creative model combinations
32
+
33
+ Unlike traditional ensembling which requires running multiple models, merged models maintain the same inference cost as a single model while often achieving comparable or superior performance.
34
+
35
+ ## Features
36
+
37
+ Key features of `mergekit` include:
38
+
39
+ - Supports Llama, Mistral, GPT-NeoX, StableLM, and more
40
+ - Many [merge methods](#merge-methods)
41
+ - GPU or CPU execution
42
+ - Lazy loading of tensors for low memory use
43
+ - Interpolated gradients for parameter values (inspired by Gryphe's [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) script)
44
+ - Piecewise assembly of language models from layers ("Frankenmerging")
45
+ - [Mixture of Experts merging](#mixture-of-experts-merging)
46
+ - [LORA extraction](#lora-extraction)
47
+ - [Evolutionary merge methods](#evolutionary-merge-methods)
48
+
49
+ 🌐 GUI Launch Alert 🤗 - We are excited to announce the launch of a mega-GPU backed graphical user interface for mergekit in Arcee! This GUI simplifies the merging process, making it more accessible to a broader audience. Check it out and contribute at the [Arcee App](https://app.arcee.ai). There is also a [Hugging Face Space](https://huggingface.co/mergekit-community) with limited amounts of GPUs.
50
+
51
+ ## Installation
52
+
53
+ ```sh
54
+ git clone https://github.com/arcee-ai/mergekit.git
55
+ cd mergekit
56
+
57
+ pip install -e . # install the package and make scripts available
58
+ ```
59
+
60
+ If the above fails with the error of:
61
+
62
+ ```
63
+ ERROR: File "setup.py" or "setup.cfg" not found. Directory cannot be installed in editable mode:
64
+ (A "pyproject.toml" file was found, but editable mode currently requires a setuptools-based build.)
65
+ ```
66
+
67
+ You may need to upgrade pip to > 21.3 with the command `python3 -m pip install --upgrade pip`
68
+
69
+ ## Usage
70
+
71
+ The script `mergekit-yaml` is the main entry point for `mergekit`. It takes a YAML configuration file and an output path, like so:
72
+
73
+ ```sh
74
+ mergekit-yaml path/to/your/config.yml ./output-model-directory [--cuda] [--lazy-unpickle] [--allow-crimes] [... other options]
75
+ ```
76
+
77
+ This will run the merge and write your merged model to `./output-model-directory`.
78
+
79
+ For more information on the arguments accepted by `mergekit-yaml` run the command `mergekit-yaml --help`.
80
+
81
+ ### Uploading to Huggingface
82
+
83
+ When you have a merged model you're happy with, you may want to share it on the Hugging Face Hub. `mergekit` generates a `README.md` for your merge with some basic information for a model card. You can edit it to include more details about your merge, like giving it a good name or explaining what it's good at; rewrite it entirely; or use the generated `README.md` as-is. It is also possible to edit your `README.md` online once it has been uploaded to the Hub.
84
+
85
+ Once you're happy with your model card and merged model, you can upload it to the Hugging Face Hub using the [huggingface_hub](https://huggingface.co/docs/huggingface_hub/index) Python library.
86
+
87
+ ```sh
88
+ # log in to huggingface with an access token (must have write permission)
89
+ huggingface-cli login
90
+ # upload your model
91
+ huggingface-cli upload your_hf_username/my-cool-model ./output-model-directory .
92
+ ```
93
+
94
+ The [documentation](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-upload) for `huggingface_hub` goes into more detail about other options for uploading.
95
+
96
+ ## Merge Configuration
97
+
98
+ Merge configurations are YAML documents specifying the operations to perform in order to produce your merged model.
99
+ Below are the primary elements of a configuration file:
100
+
101
+ - `merge_method`: Specifies the method to use for merging models. See [Merge Methods](#merge-methods) for a list.
102
+ - `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
103
+ - `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
104
+ - `base_model`: Specifies the base model used in some merging methods.
105
+ - `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
106
+ - `dtype`: Specifies the data type used for the merging operation.
107
+ - `tokenizer` or `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
108
+ - `chat_template`: Specifies a chat template for the merged model.
109
+
110
+ ### Parameter Specification
111
+
112
+ Parameters are flexible and can be set with varying precedence. They can be specified conditionally using tensor name filters, which allows finer control such as differentiating between attention heads and fully connected layers.
113
+
114
+ Parameters can be specified as:
115
+
116
+ - **Scalars**: Single floating-point values.
117
+ - **Gradients**: List of floating-point values, specifying an interpolated gradient.
118
+
119
+ The parameters can be set at different levels, with decreasing precedence as follows:
120
+
121
+ 1. `slices.*.sources.parameters` - applying to a specific input slice
122
+ 2. `slices.*.parameters` - applying to a specific output slice
123
+ 3. `models.*.parameters` or `input_model_parameters` - applying to any tensors coming from specific input models
124
+ 4. `parameters` - catchall
125
+
126
+ ### Tokenizer Configuration
127
+
128
+ The tokenizer behavior can be configured in two ways: using the new `tokenizer` field (recommended) or the legacy `tokenizer_source` field (maintained for backward compatibility). These fields are mutually exclusive - you should use one or the other, not both.
129
+
130
+ #### Modern Configuration (tokenizer)
131
+
132
+ The `tokenizer` field provides fine-grained control over vocabulary and embeddings:
133
+
134
+ ```yaml
135
+ tokenizer:
136
+ source: "union" # or "base" or a specific model path
137
+ tokens: # Optional: configure specific tokens
138
+ <token_name>:
139
+ source: ... # Specify embedding source
140
+ force: false # Optional: force this embedding for all models
141
+ pad_to_multiple_of: null # Optional: pad vocabulary size
142
+ ```
143
+
144
+ ##### Tokenizer Source
145
+
146
+ The `source` field determines the vocabulary of the output model:
147
+
148
+ - `union`: Combine vocabularies from all input models (default)
149
+ - `base`: Use vocabulary from the base model
150
+ - `"path/to/model"`: Use vocabulary from a specific model
151
+
152
+ ##### Token Embedding Handling
153
+
154
+ When merging models with different vocabularies, mergekit uses smart defaults to handle token embeddings:
155
+
156
+ - If a token exists in the base model, its embedding is used as the default
157
+ - If only one model has the token, that model's embedding is used
158
+ - Otherwise, an average of all available embeddings is used
159
+
160
+ You can override these defaults for specific tokens:
161
+
162
+ ```yaml
163
+ tokenizer:
164
+ source: union
165
+ tokens:
166
+ # Use embedding from a specific model
167
+ <|im_start|>:
168
+ source: "path/to/chatml/model"
169
+
170
+ # Force a specific embedding for all models
171
+ <|special|>:
172
+ source: "path/to/model"
173
+ force: true
174
+
175
+ # Map a token to another model's token embedding
176
+ <|renamed_token|>:
177
+ source:
178
+ kind: "model_token"
179
+ model: "path/to/model"
180
+ token: "<|original_token|>" # or use token_id: 1234
181
+ ```
182
+
183
+ ##### Practical Example
184
+
185
+ Here's how you might preserve both Llama 3 Instruct and ChatML prompt formats when merging models:
186
+
187
+ ```yaml
188
+ tokenizer:
189
+ source: union
190
+ tokens:
191
+ # ChatML tokens
192
+ <|im_start|>:
193
+ source: "chatml_model"
194
+ <|im_end|>:
195
+ source: "chatml_model"
196
+
197
+ # Llama 3 tokens - force original embeddings
198
+ <|start_header_id|>:
199
+ source: "llama3_model"
200
+ force: true
201
+ <|end_header_id|>:
202
+ source: "llama3_model"
203
+ force: true
204
+ <|eot_id|>:
205
+ source: "llama3_model"
206
+ force: true
207
+ ```
208
+
209
+ #### Legacy Configuration (tokenizer_source)
210
+
211
+ For backward compatibility, the `tokenizer_source` field is still supported:
212
+
213
+ ```yaml
214
+ tokenizer_source: "union" # or "base" or a model path
215
+ ```
216
+
217
+ This provides basic tokenizer selection but lacks the fine-grained control of the modern `tokenizer` field.
218
+
219
+ ### Chat Template Configuration
220
+
221
+ The optional `chat_template` field allows overriding the chat template used for the merged model.
222
+
223
+ ```yaml
224
+ chat_template: "auto" # or a template name or Jinja2 template
225
+ ```
226
+
227
+ Options include:
228
+
229
+ - `"auto"`: Automatically select the most common template among input models
230
+ - Built-in templates: `"alpaca"`, `"chatml"`, `"llama3"`, `"mistral"`, `"exaone"`
231
+ - A Jinja2 template string for custom formatting
232
+
233
+ ### Examples
234
+
235
+ Several examples of merge configurations are available in [`examples/`](examples/).
236
+
237
+ ## Merge Methods
238
+
239
+ A quick overview of the currently supported merge methods:
240
+
241
+ | Method | `merge_method` value | Multi-Model | Uses base model |
242
+ | ------------------------------------------------------------------------------------------------ | -------------------- | ----------- | --------------- |
243
+ | Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | ✅ | ❌ |
244
+ | SLERP | `slerp` | ❌ | ✅ |
245
+ | Nearswap | `nearswap` | ❌ | ✅ |
246
+ | [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | ✅ | ✅ |
247
+ | [TIES](https://arxiv.org/abs/2306.01708) | `ties` | ✅ | ✅ |
248
+ | [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | ✅ | ✅ |
249
+ | [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | ✅ | ✅ |
250
+ | Passthrough | `passthrough` | ❌ | ❌ |
251
+ | [Model Breadcrumbs](https://arxiv.org/abs/2312.06795) | `breadcrumbs` | ✅ | ✅ |
252
+ | [Model Breadcrumbs](https://arxiv.org/abs/2312.06795) + [TIES](https://arxiv.org/abs/2306.01708) | `breadcrumbs_ties` | ✅ | ✅ |
253
+ | [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | ✅ | ✅ |
254
+ | NuSLERP | `nuslerp` | ❌ | ✅ |
255
+ | [DELLA](https://arxiv.org/abs/2406.11617) | `della` | ✅ | ✅ |
256
+ | [DELLA](https://arxiv.org/abs/2406.11617) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `della_linear` | ✅ | ✅ |
257
+
258
+ ### Linear
259
+
260
+ The classic merge method - a simple weighted average.
261
+
262
+ Parameters:
263
+
264
+ - `weight` - relative (or absolute if `normalize=False`) weighting of a given tensor
265
+ - `normalize` - if true, the weights of all models contributing to a tensor will be normalized. Default behavior.
266
+
267
+ ### SLERP
268
+
269
+ Spherically interpolate the parameters of two models. One must be set as `base_model`.
270
+
271
+ Parameters:
272
+
273
+ - `t` - interpolation factor. At `t=0` will return `base_model`, at `t=1` will return the other one.
274
+
275
+ ### Nearswap
276
+
277
+ Interpolates base model with secondary model if similarity is below t. Accepts two models.
278
+
279
+ Parameters:
280
+
281
+ - `t` - similarity threshold
282
+
283
+ ### [Task Arithmetic](https://arxiv.org/abs/2212.04089)
284
+
285
+ Computes "task vectors" for each model by subtracting a base model. Merges the task vectors linearly and adds back the base. Works great for models that were fine tuned from a common ancestor. Also a super useful mental framework for several of the more involved merge methods.
286
+
287
+ Parameters: same as [Linear](#linear)
288
+
289
+ ### [TIES](https://arxiv.org/abs/2306.01708)
290
+
291
+ Builds on the task arithmetic framework. Resolves interference between models by sparsifying the task vectors and applying a sign consensus algorithm. Allows you to merge a larger number of models and retain more of their strengths.
292
+
293
+ Parameters: same as [Linear](#linear), plus:
294
+
295
+ - `density` - fraction of weights in differences from the base model to retain
296
+
297
+ ### [DARE](https://arxiv.org/abs/2311.03099)
298
+
299
+ In the same vein as TIES, sparsifies task vectors to reduce interference. Differs in that DARE uses random pruning with a novel rescaling to better match performance of the original models. DARE can be used either with the sign consensus algorithm of TIES (`dare_ties`) or without (`dare_linear`).
300
+
301
+ Parameters: same as [TIES](#ties) for `dare_ties`, or [Linear](#linear) for `dare_linear`
302
+
303
+ ### Passthrough
304
+
305
+ `passthrough` is a no-op that simply passes input tensors through unmodified. It is meant to be used for layer-stacking type merges where you have only one input model. Useful for frankenmerging.
306
+
307
+ ### [Model Breadcrumbs](https://arxiv.org/abs/2312.06795)
308
+
309
+ An extension of task arithmetic that discards both small and extremely large differences from the base model. As with DARE, the Model Breadcrumbs algorithm can be used with (`breadcrumbs_ties`) or without (`breadcrumbs`) the sign consensus algorithm of TIES.
310
+
311
+ Parameters: same as [Linear](#linear), plus:
312
+
313
+ - `density` - fraction of weights in differences from the base model to retain
314
+ - `gamma` - fraction of largest magnitude differences to remove
315
+
316
+ Note that `gamma` corresponds with the parameter `β` described in the paper, while `density` is the final density of the sparsified tensors (related to `γ` and `β` by `density = 1 - γ - β`). For good default values, try `density: 0.9` and `gamma: 0.01`.
317
+
318
+ ### [Model Stock](https://arxiv.org/abs/2403.19522)
319
+
320
+ Uses some neat geometric properties of fine tuned models to compute good weights for linear interpolation. Requires at least three models, including a base model.
321
+
322
+ Parameters:
323
+
324
+ - `filter_wise`: if true, weight calculation will be per-row rather than per-tensor. Not recommended.
325
+
326
+ ### NuSLERP
327
+
328
+ Spherically interpolate between parameters, but with more options and more sensical configuration! Does not require a base model, but can use one to do spherical interpolation of task vectors. Only works with either two models or two plus a base model.
329
+
330
+ Parameters:
331
+
332
+ - `weight`: relative weighting of a given tensor
333
+ - `nuslerp_flatten`: set to false to do row-wise/column-wise interpolation instead of treating tensors as vectors
334
+ - `nuslerp_row_wise`: SLERP row vectors instead of column vectors
335
+
336
+ To replicate the behavior of the original `slerp` method, set `weight` to `1-t` and `t` for your first and second model respectively.
337
+
338
+ ### [DELLA](https://arxiv.org/abs/2406.11617)
339
+
340
+ Building upon DARE, DELLA uses adaptive pruning based on parameter magnitudes. DELLA first ranks parameters in each row of delta parameters and assigns drop probabilities inversely proportional to their magnitudes. This allows it to retain more important changes while reducing interference. After pruning, it rescales the remaining parameters similar to [DARE](#dare). DELLA can be used with (`della`) or without (`della_linear`) the sign elect step of TIES
341
+
342
+ Parameters: same as [Linear](#linear), plus:
343
+
344
+ - `density` - fraction of weights in differences from the base model to retain
345
+ - `epsilon` - maximum change in drop probability based on magnitude. Drop probabilities assigned will range from `density - epsilon` to `density + epsilon`. (When selecting values for `density` and `epsilon`, ensure that the range of probabilities falls within 0 to 1)
346
+ - `lambda` - scaling factor for the final merged delta parameters before merging with the base parameters.
347
+
348
+ ## LoRA extraction
349
+
350
+ Mergekit allows extracting PEFT-compatible low-rank approximations of finetuned models.
351
+
352
+ ### Usage
353
+
354
+ ```sh
355
+ mergekit-extract-lora finetuned_model_id_or_path base_model_id_or_path output_path [--no-lazy-unpickle] --rank=desired_rank
356
+ ```
357
+
358
+ ## Mixture of Experts merging
359
+
360
+ The `mergekit-moe` script supports merging multiple dense models into a mixture of experts, either for direct use or for further training. For more details see the [`mergekit-moe` documentation](docs/moe.md).
361
+
362
+ ## Evolutionary merge methods
363
+
364
+ See [`docs/evolve.md`](docs/evolve.md) for details.
365
+
366
+ ## ✨ Merge in the Cloud ✨
367
+
368
+ We host merging on Arcee's cloud GPUs - you can launch a cloud merge in the [Arcee App](https://app.arcee.ai). Or through python - grab an ARCEE_API_KEY:
369
+
370
+ `export ARCEE_API_KEY=<your-api-key>`
371
+ `pip install -q arcee-py`
372
+
373
+ ```python
374
+ import arcee
375
+ arcee.merge_yaml("bio-merge","./examples/bio-merge.yml")
376
+ ```
377
+
378
+ Check your merge status at the [Arcee App](https://app.arcee.ai)
379
+
380
+ When complete, either deploy your merge:
381
+
382
+ ```python
383
+ arcee.start_deployment("bio-merge", merging="bio-merge")
384
+ ```
385
+
386
+ Or download your merge:
387
+
388
+ `!arcee merging download bio-merge`
389
+
390
+ ## Citation
391
+
392
+ If you find `mergekit` useful in your research, please consider citing the [paper](https://aclanthology.org/2024.emnlp-industry.36/):
393
+
394
+ ```bibtex
395
+ @inproceedings{goddard-etal-2024-arcees,
396
+ title = "Arcee{'}s {M}erge{K}it: A Toolkit for Merging Large Language Models",
397
+ author = "Goddard, Charles and
398
+ Siriwardhana, Shamane and
399
+ Ehghaghi, Malikeh and
400
+ Meyers, Luke and
401
+ Karpukhin, Vladimir and
402
+ Benedict, Brian and
403
+ McQuade, Mark and
404
+ Solawetz, Jacob",
405
+ editor = "Dernoncourt, Franck and
406
+ Preo{\c{t}}iuc-Pietro, Daniel and
407
+ Shimorina, Anastasia",
408
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track",
409
+ month = nov,
410
+ year = "2024",
411
+ address = "Miami, Florida, US",
412
+ publisher = "Association for Computational Linguistics",
413
+ url = "https://aclanthology.org/2024.emnlp-industry.36",
414
+ doi = "10.18653/v1/2024.emnlp-industry.36",
415
+ pages = "477--485",
416
+ abstract = "The rapid growth of open-source language models provides the opportunity to merge model checkpoints, combining their parameters to improve performance and versatility. Advances in transfer learning have led to numerous task-specific models, which model merging can integrate into powerful multitask models without additional training. MergeKit is an open-source library designed to support this process with an efficient and extensible framework suitable for any hardware. It has facilitated the merging of thousands of models, contributing to some of the world{'}s most powerful open-source model checkpoints. The library is accessible at: https://github.com/arcee-ai/mergekit.",
417
+ }
418
+ ```
mergekit/docs/evolve.md ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mergekit-evolve
2
+
3
+ `mergekit-evolve` is a script that uses an evolutionary algorithm (CMA-ES) to optimize the parameters of a merge against model metrics. This is inspired by SakanaAI's [Evolutionary Optimization of Model Merging Recipes](https://arxiv.org/abs/2403.13187), in particular their parameter-space approach. `mergekit-evolve` uses EleutherAI's [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to define and evaluate the scoring function. The script is set up to be run either single-node or on a Ray cluster and has a few different strategies for scheduling operations depending on your particular configuration of compute.
4
+
5
+ ## Installation
6
+
7
+ Install `mergekit` with the `evolve` (and optionally `vllm`) features:
8
+
9
+ ```sh
10
+ git clone https://github.com/arcee-ai/mergekit.git
11
+ cd mergekit
12
+
13
+ pip install -e .[evolve,vllm]
14
+ ```
15
+
16
+ If you had a perfectly good pytorch environment going and installing an older version of vLLM downgraded it and broke flash attention, run the following commands to fix it:
17
+
18
+ ```sh
19
+ pip uninstall flash-attn
20
+ pip cache purge
21
+ pip install flash-attn
22
+ ```
23
+
24
+ ## Configuration
25
+
26
+ `mergekit-evolve` takes in a YAML configuration file that defines how the merge is parameterized and what metrics to optimize. The general syntax is as follows:
27
+
28
+ ```yml
29
+ genome:
30
+ models:
31
+ - model_1
32
+ - model_2
33
+ ...
34
+ - model_n
35
+ merge_method: dare_ties
36
+ base_model: base_model_if_needed
37
+ tokenizer_source: null # optional
38
+ layer_granularity: 8
39
+
40
+ # optional:
41
+ normalize: false
42
+ allow_negative_weights: false
43
+ smooth: false
44
+ filters: ...
45
+ tasks:
46
+ - name: lm_eval_task_name
47
+ weight: 1.0 # optional
48
+ metric: "acc,none" # defaults to acc,none
49
+ - name: ... # as many as you want
50
+ ```
51
+
52
+ ### Genome Definition
53
+
54
+ The `genome` section of the configuration file defines the parameter space that `mergekit-evolve` will be optimizing in.
55
+
56
+ #### `models`
57
+
58
+ This should be a list of all of the models you want available to be merged. Depending on the merge method not all are guaranteed to be used in the final merge.
59
+
60
+ #### `merge_method`
61
+
62
+ Merge method to be used. Currently supported values are `linear`, `dare_ties`, `task_arithmetic`, `ties`, and `slerp`.
63
+
64
+ #### `base_model`
65
+
66
+ The base model for the merge, if applicable.
67
+
68
+ #### `layer_granularity`
69
+
70
+ A set of parameters will be introduced for each consecutive slice of `layer_granularity` layers. So for example, a 32-layer model like `mistralai/Mistral-7B-v0.1` with `layer_granularity: 8` will be divided into 4 groups of 8 layers with different merge parameters for each. The value specified here must be a divisor of the number of layers in your input models. Large values of `layer_granularity` will reduce the search space greatly, meaning you will get faster convergence at the cost of a potentially less good global solution.
71
+
72
+ When not set, one set of parameters will be used for all layers.
73
+
74
+ #### `normalize`
75
+
76
+ Sets the `normalize` flag when merging. For methods like `linear`, `ties`, and `dare_ties` this constrains the search space to a set of definitely valid models. Similarly to `layer_granularity`, this can greatly speed up convergence at the cost of ruling out oddball solutions that might score better than more standard merges.
77
+
78
+ #### `allow_negative_weights`
79
+
80
+ Pretty self explanatory. When this flag is not set, the absolute value of weight parameters is used. Sensible search space reduction for `linear` and `slerp`. For task arithmetic based methods you probably want `allow_negative_weights: true`.
81
+
82
+ #### `smooth`
83
+
84
+ If set to `true`, then parameter values will be interpolated across layers instead of assigning a single, fixed value to each block.
85
+
86
+ #### `filters`
87
+
88
+ Accepts a list of filters, as in `mergekit-yaml`, by which to separate the parameters. So, for example, setting filters as below for a Llama-based merge:
89
+
90
+ ```yaml
91
+ filters:
92
+ - self_attn
93
+ - mlp
94
+ ```
95
+
96
+ Will divide up the merge parameters into three groups - self attention parameters, MLP parameters, and a third for everything else. Separating the parameters out like this can be very beneficial when merging models trained on different prompt formats. It also makes your parameter space three times as big though!
97
+
98
+ ### Task Definition
99
+
100
+ To evaluate the produced merges you need to specify a list of tasks supported by the EleutherAI LM evaluation harness. This can be either [built in tasks](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks) (don't be naughty) or tasks you define yourself (see the [New Task Guide](https://github.com/EleutherAI/lm-evaluation-harness/blob/main/docs/new_task_guide.md) for how). If your task does not use `acc` as the metric then you must specify the correct metric name. Each task can also optionally have a weight associated.
101
+
102
+ `mergekit-evolve` aims to maximize the score of the merge, so if you are using any tasks or metrics where a lower score is better (like perplexity) be sure to assign a negative weight to that task.
103
+
104
+ ## Running `mergekit-evolve`
105
+
106
+ ```sh
107
+ mergekit-evolve [OPTIONS] --storage-path PATH GENOME_CONFIG_PATH
108
+ ```
109
+
110
+ `mergekit-evolve` needs a storage path specified, where it will save the input models, merges to evaluate, and the config for the current best merge evaluated. If you are not using in-memory merging this can require a _lot_ of space - expect at least one fp16 model per GPU.
111
+
112
+ Some important options:
113
+
114
+ ### Scheduling Strategy (`--strategy`)
115
+
116
+ There are three different strategies implemented for scheduling merging and evaluation jobs.
117
+
118
+ #### `pool`
119
+
120
+ Assigns an actor to each GPU in your cluster and guarantees merges and evaluations are performed on the same node. This is a safe default suitable for any configuration, local or distributed.
121
+
122
+ #### `buffered`
123
+
124
+ Maintains a buffer of tasks scheduled to ensure that there is always a model merging or ready to evaluate for each GPU. Allows for concurrent merging and evaluation of models on the same GPU if enough VRAM is available. Only suitable for a single-node setup or when `--storage-path` points to a fast shared filesystem.
125
+
126
+ #### `serial`
127
+
128
+ Uses Ray placement groups to ensure merges and their evaluations happen on the same node, but otherwise just lets Ray take the wheel. Maybe give a try if you're having trouble with the other two, otherwise probably don't use it.
129
+
130
+ ### Evaluation LLM Backend
131
+
132
+ By default `mergekit-evolve` will use the `hf` backend for `lm-eval`. To use vLLM instead, pass the `--vllm` flag.
133
+
134
+ ### On-Disk vs. In-Memory
135
+
136
+ By default `mergekit-evolve` will perform merges, write the result to disk, then start up an instance of lm-eval pointing at that path. This is a safe default and will generally always work but also causes a lot of GPU downtime and eats disk space. When using the `pool` scheduling strategy, you have the option to instead keep a model resident in memory and directly update its parameters instead of merging to disk. This is much faster and uses no additional disk space. However, it does involve mucking around in the internals of vLLM and the LM evaluation harness. So it might break at any moment! Choose wisely. Use `--in-memory` to enable this mode.
137
+
138
+ ### Task search path
139
+
140
+ If you're using custom task definitions (and you should be) then you can append to the search path using the `--task-search-path` option. This should point to the directory your custom task YAML is in (or a parent of that directory). Multiple paths can be included by repeating the option.
141
+
142
+ ### Batch size
143
+
144
+ Override the batch size used during merge evaluation. If using vLLM `auto` is recommended (default).
145
+
146
+ ### CMA-ES options
147
+
148
+ #### `--max-fevals`
149
+
150
+ Maximum number of merges to evaluate. Note that the `cma` package is very loosey-goosey with this number and will happily go over by 50% depending on the size of each generation. Set to 100 by default.
151
+
152
+ #### `--sigma0`
153
+
154
+ Initial value of sigma for CMA-ES. No need to play with this unless you really know what you're doing.
155
+
156
+ ### WandB logging
157
+
158
+ `mergekit-evolve` supports logging metrics to Weights & Biases. Enable this functionality with the `--wandb` flag. Project and entity names can be overridden with the `--wandb-project` and `--wandb-entity` options.
159
+
160
+ ### Example
161
+
162
+ ```sh
163
+ mergekit-evolve --strategy pool --wandb --wandb-project mergekit-evolve --wandb-entity arcee-ai --storage-path /path/to/mergekit-evolve/ ./config.yml
164
+ ```
165
+
166
+ ## Output
167
+
168
+ `mergekit-evolve` will write the merge configuration for the best merge found so far to the storage path with the filename `best_config.yaml`. If you're using WandB it will also log the config as an artifact. The script will keep running until a KeyboardInterrupt is received or `--max-fevals` is generously exceeded.
169
+
170
+ ## Caveats
171
+
172
+ `mergekit-evolve` is a work in progress and has probably not been tested on your specific configuration. Keep an eye on the output before leaving it running, and if you run in to any issues don't hesitate to file an issue!
173
+
174
+ ## Acknowledgements
175
+
176
+ Thanks to SakanaAI for the inspiration and the EleutherAI team for the LM evaluation harness.
mergekit/docs/moe.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # mergekit-moe
2
+
3
+ `mergekit-moe` is a script for combining Mistral or Llama models of the same size into Mixtral Mixture of Experts models. The script will combine the self-attention and layer normalization parameters from a "base" model with the MLP parameters from a set of "expert" models.
4
+
5
+ If using the `hidden` or `cheap_embed` gate mode, the output model will be usable without any further training. If you are initializing a model to do further training on, such as for sparse upcycling, then use the `random` gate mode to get a model ready for training.
6
+
7
+ ## Configuration
8
+
9
+ `mergekit-moe` uses its own YML configuration syntax, which looks like so:
10
+
11
+ ```yml
12
+ base_model: path/to/self_attn_donor
13
+ gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
14
+ dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
15
+ ## (optional)
16
+ # experts_per_token: 2
17
+ experts:
18
+ - source_model: expert_model_1
19
+ positive_prompts:
20
+ - "This is a prompt that is demonstrative of what expert_model_1 excels at"
21
+ ## (optional)
22
+ # negative_prompts:
23
+ # - "This is a prompt expert_model_1 should not be used for"
24
+ - source_model: expert_model_2
25
+ # ... and so on
26
+ ```
27
+
28
+ The script takes two arguments, an input config and an output path: `mergekit-moe ./config.yml ./my-clowncar-moe-12x180B`
29
+
30
+ Currently the script can output models that use the Mixtral, Deepseek MoE, or Qwen MoE architectures. Some output architectures support a shared expert which will be activated for all tokens, which can be configured like this:
31
+
32
+ ```yml
33
+ base_model: path/to/self_attn_donor
34
+ gate_mode: hidden # one of "hidden", "cheap_embed", or "random"
35
+ dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
36
+ experts:
37
+ ...
38
+ shared_experts:
39
+ - source_model: model_name
40
+ positive_prompts: # required by Qwen MoE for "hidden" gate mode, otherwise not allowed
41
+ - "blah blah"
42
+ # (optional, but recommended:)
43
+ residual_scale: 0.1 # downweight output from shared expert to prevent overcooking the model
44
+ ```
45
+
46
+ Currently only up to one shared expert is supported.
47
+
48
+ An appropriate architecture will be inferred based on the input models and presence or absence of shared experts in your configuration. Alternatively, you can explicitly specify an output architecture by setting the `architecture:` field in your config. For example:
49
+
50
+ ```yml
51
+ base_model: path/to/self_attn_donor
52
+ architecture: qwen
53
+ # ... and so on
54
+ ```
55
+
56
+ ### Gate Modes
57
+
58
+ There are three methods for populating the MoE gates implemented.
59
+
60
+ #### "hidden"
61
+
62
+ Uses the hidden state representations of the positive/negative prompts for MoE gate parameters. Best quality and most effective option; the default. Requires evaluating each prompt using the base model so you might not be able to use this on constrained hardware (depending on the model). You can use `--load-in-8bit` or `--load-in-4bit` to reduce VRAM usage.
63
+
64
+ #### "cheap_embed"
65
+
66
+ Uses only the raw token embedding of the prompts, using the same gate parameters for every layer. Distinctly less effective than "hidden". Can be run on much, much lower end hardware.
67
+
68
+ #### "random"
69
+
70
+ Randomly initializes the MoE gates. Good for if you are going to fine tune the model afterwards, or maybe if you want something a little unhinged? I won't judge.
71
+
72
+ ## Example Configurations
73
+
74
+ Sparse upcycling of smol_llama into a 8x220M MoE:
75
+
76
+ ```yml
77
+ base_model: BEE-spoke-data/smol_llama-220M-GQA
78
+ gate_mode: random
79
+ dtype: bfloat16
80
+ experts:
81
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
82
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
83
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
84
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
85
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
86
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
87
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
88
+ - source_model: BEE-spoke-data/smol_llama-220M-GQA
89
+ # and then train the sucker!
90
+ ```
91
+
92
+ Shove some Mistral models in a clown car:
93
+
94
+ ```yml
95
+ base_model: NousResearch/Hermes-2-Pro-Mistral-7B
96
+ gate_mode: hidden
97
+ dtype: bfloat16
98
+ experts:
99
+ - source_model: NousResearch/Hermes-2-Pro-Mistral-7B
100
+ positive_prompts:
101
+ - "<|im_start|>user\nHello, who are you?<|im_end|>"
102
+ - "<|im_start|>user\nI need help with"
103
+ - source_model: BioMistral/BioMistral-7B-DARE
104
+ positive_prompts:
105
+ - "As a doctor of medicine,"
106
+ - source_model: PocketDoc/Dans-AdventurousWinds-7b
107
+ positive_prompts:
108
+ - "[Genres: Science Fiction]\n[Tags: humor, old school, sci fi]"
109
+ - "> get ye flask"
110
+ - "[Mode: Interactive Storyteller]"
111
+ - source_model: VAGOsolutions/SauerkrautLM-7b-HerO
112
+ positive_prompts:
113
+ - "<|im_start|>user\nWie geht es dir?<|im_end|>"
114
+ - "Das ist ein Satz auf Deutsch."
115
+ ```
116
+
117
+ ## FAQ
118
+
119
+ ### What does the "Your model has duplicated tensors but the --clone-tensors flag is not set" warning mean?
120
+
121
+ Answer from [Charles O. Goddard (cg123)](https://github.com/cg123)
122
+ (also see [this GitHub issue](https://github.com/arcee-ai/mergekit/issues/279#issuecomment-2081818104)):
123
+
124
+ > This is completely benign. This happens when a single tensor from a model is used in multiple places, like when doing sparse upcycling with the moe script or doing passthrough merges that repeat layers. Having `--clone-tensors` set can use slightly more memory, but having it unset will slow down saving and introduce small memory usage spikes in cases where this warning occurs. It's honestly a small enough difference that the warning could be removed entirely.
mergekit/examples/bio-merge.yml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models:
2
+ - model: mistralai/Mistral-7B-Instruct-v0.2
3
+ parameters:
4
+ density: 0.5
5
+ weight: 0.5
6
+ - model: BioMistral/BioMistral-7B
7
+ parameters:
8
+ density: 0.5
9
+ weight: 0.5
10
+ merge_method: ties
11
+ base_model: mistralai/Mistral-7B-v0.1
12
+ parameters:
13
+ normalize: false
14
+ int8_mask: true
15
+ dtype: float16
mergekit/examples/gradient-slerp.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ slices:
2
+ - sources:
3
+ - model: psmathur/orca_mini_v3_13b
4
+ layer_range: [0, 40]
5
+ - model: garage-bAInd/Platypus2-13B
6
+ layer_range: [0, 40]
7
+ # or, the equivalent models: syntax:
8
+ # models:
9
+ # - model: psmathur/orca_mini_v3_13b
10
+ # - model: garage-bAInd/Platypus2-13B
11
+ merge_method: slerp
12
+ base_model: psmathur/orca_mini_v3_13b
13
+ parameters:
14
+ t:
15
+ - filter: self_attn
16
+ value: [0, 0.5, 0.3, 0.7, 1]
17
+ - filter: mlp
18
+ value: [1, 0.5, 0.7, 0.3, 0]
19
+ - value: 0.5 # fallback for rest of tensors
20
+ dtype: float16
mergekit/examples/linear.yml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models:
2
+ - model: psmathur/orca_mini_v3_13b
3
+ parameters:
4
+ weight: 1.0
5
+ - model: WizardLM/WizardLM-13B-V1.2
6
+ parameters:
7
+ weight: 0.3
8
+ - model: garage-bAInd/Platypus2-13B
9
+ parameters:
10
+ weight: 0.5
11
+ merge_method: linear
12
+ dtype: float16
mergekit/examples/mega.yml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ slices:
2
+ - sources:
3
+ - model: psmathur/orca_mini_v3_13b
4
+ layer_range: [0, 40]
5
+ - model: garage-bAInd/Platypus2-13B
6
+ layer_range: [0, 40]
7
+ merge_method: slerp
8
+ base_model: psmathur/orca_mini_v3_13b
9
+ parameters:
10
+ t:
11
+ - filter: self_attn
12
+ value: [0, 0.5, 0.3, 0.7, 1]
13
+ - filter: mlp
14
+ value: [1, 0.5, 0.7, 0.3, 0]
15
+ - value: 0.5 # fallback for rest of tensors
16
+ dtype: float16
17
+ name: gradient-slerp
18
+ ---
19
+ models:
20
+ - model: gradient-slerp
21
+ parameters:
22
+ density: [1, 0.7, 0.1] # density gradient
23
+ weight: 1.0
24
+ - model: WizardLM/WizardMath-13B-V1.0
25
+ parameters:
26
+ density: 0.33
27
+ weight:
28
+ - filter: mlp
29
+ value: 0.5
30
+ - value: 0
31
+ merge_method: ties
32
+ base_model: TheBloke/Llama-2-13B-fp16
33
+ parameters:
34
+ normalize: true
35
+ int8_mask: true
36
+ dtype: float16
37
+ name: gradient-slerp-ties
mergekit/examples/orcamini-platy-44layer.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ slices:
2
+ - sources:
3
+ - model: psmathur/orca_mini_v3_13b
4
+ layer_range: [0, 24]
5
+ - sources:
6
+ - model: garage-bAInd/Platypus2-13B
7
+ layer_range: [20, 40]
8
+ merge_method: passthrough
9
+ dtype: float16
mergekit/examples/ties.yml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models:
2
+ - model: psmathur/orca_mini_v3_13b
3
+ parameters:
4
+ density: [1, 0.7, 0.1] # density gradient
5
+ weight: 1.0
6
+ - model: garage-bAInd/Platypus2-13B
7
+ parameters:
8
+ density: 0.5
9
+ weight: [0, 0.3, 0.7, 1] # weight gradient
10
+ - model: WizardLM/WizardMath-13B-V1.0
11
+ parameters:
12
+ density: 0.33
13
+ weight:
14
+ - filter: mlp
15
+ value: 0.5
16
+ - value: 0
17
+ merge_method: ties
18
+ base_model: TheBloke/Llama-2-13B-fp16
19
+ parameters:
20
+ normalize: true
21
+ int8_mask: true
22
+ dtype: float16
mergekit/mergekit.egg-info/PKG-INFO ADDED
@@ -0,0 +1,458 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: mergekit
3
+ Version: 0.0.5.2
4
+ Summary: Tools for merging pre-trained large language models
5
+ Author-email: Charles Goddard <chargoddard@gmail.com>
6
+ License: LGPL-3.0-or-later
7
+ Project-URL: repository, https://github.com/cg123/mergekit
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: torch>=2.0.0
11
+ Requires-Dist: tqdm==4.66.5
12
+ Requires-Dist: click==8.1.7
13
+ Requires-Dist: safetensors~=0.4.3
14
+ Requires-Dist: accelerate~=1.0.1
15
+ Requires-Dist: pydantic~=2.9.2
16
+ Requires-Dist: immutables==0.20
17
+ Requires-Dist: transformers>=4.45.2
18
+ Requires-Dist: tokenizers>=0.20.1
19
+ Requires-Dist: huggingface_hub
20
+ Requires-Dist: peft
21
+ Requires-Dist: typing-extensions
22
+ Requires-Dist: sentencepiece
23
+ Requires-Dist: protobuf
24
+ Requires-Dist: scipy
25
+ Requires-Dist: datasets
26
+ Provides-Extra: dev
27
+ Requires-Dist: black~=24.10.0; extra == "dev"
28
+ Requires-Dist: isort~=5.13.2; extra == "dev"
29
+ Requires-Dist: pre-commit~=4.0.1; extra == "dev"
30
+ Provides-Extra: test
31
+ Requires-Dist: pytest~=8.3.3; extra == "test"
32
+ Provides-Extra: evolve
33
+ Requires-Dist: ray; extra == "evolve"
34
+ Requires-Dist: cma; extra == "evolve"
35
+ Requires-Dist: lm_eval; extra == "evolve"
36
+ Requires-Dist: wandb; extra == "evolve"
37
+ Provides-Extra: vllm
38
+ Requires-Dist: vllm==0.3.2; extra == "vllm"
39
+ Requires-Dist: lm_eval[vllm]; extra == "vllm"
40
+
41
+ # mergekit
42
+
43
+ `mergekit` is a toolkit for merging pre-trained language models. `mergekit` uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
44
+
45
+ ## Contents
46
+
47
+ - [Why Merge Models?](#why-merge-models)
48
+ - [Features](#features)
49
+ - [Installation](#installation)
50
+ - [Usage](#usage)
51
+ - [Merge Configuration](#merge-configuration)
52
+ - [Parameter Specification](#parameter-specification)
53
+ - [Tokenizer Configuration](#tokenizer-configuration)
54
+ - [Chat Template Configuration](#chat-template-configuration)
55
+ - [Examples](#examples)
56
+ - [Merge Methods](#merge-methods)
57
+ - [LoRA extraction](#lora-extraction)
58
+ - [Mixture of Experts merging](#mixture-of-experts-merging)
59
+ - [Evolutionary merge methods](#evolutionary-merge-methods)
60
+ - [Merge in the Cloud](#-merge-in-the-cloud-)
61
+ - [Citation](#citation)
62
+
63
+ ## Why Merge Models?
64
+
65
+ Model merging is a powerful technique that allows combining the strengths of different models without the computational overhead of ensembling or the need for additional training. By operating directly in the weight space of models, merging can:
66
+
67
+ - Combine multiple specialized models into a single versatile model
68
+ - Transfer capabilities between models without access to training data
69
+ - Find optimal trade-offs between different model behaviors
70
+ - Improve performance while maintaining inference costs
71
+ - Create new capabilities through creative model combinations
72
+
73
+ Unlike traditional ensembling which requires running multiple models, merged models maintain the same inference cost as a single model while often achieving comparable or superior performance.
74
+
75
+ ## Features
76
+
77
+ Key features of `mergekit` include:
78
+
79
+ - Supports Llama, Mistral, GPT-NeoX, StableLM, and more
80
+ - Many [merge methods](#merge-methods)
81
+ - GPU or CPU execution
82
+ - Lazy loading of tensors for low memory use
83
+ - Interpolated gradients for parameter values (inspired by Gryphe's [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) script)
84
+ - Piecewise assembly of language models from layers ("Frankenmerging")
85
+ - [Mixture of Experts merging](#mixture-of-experts-merging)
86
+ - [LORA extraction](#lora-extraction)
87
+ - [Evolutionary merge methods](#evolutionary-merge-methods)
88
+
89
+ 🌐 GUI Launch Alert 🤗 - We are excited to announce the launch of a mega-GPU backed graphical user interface for mergekit in Arcee! This GUI simplifies the merging process, making it more accessible to a broader audience. Check it out and contribute at the [Arcee App](https://app.arcee.ai). There is also a [Hugging Face Space](https://huggingface.co/mergekit-community) with limited amounts of GPUs.
90
+
91
+ ## Installation
92
+
93
+ ```sh
94
+ git clone https://github.com/arcee-ai/mergekit.git
95
+ cd mergekit
96
+
97
+ pip install -e . # install the package and make scripts available
98
+ ```
99
+
100
+ If the above fails with the error of:
101
+
102
+ ```
103
+ ERROR: File "setup.py" or "setup.cfg" not found. Directory cannot be installed in editable mode:
104
+ (A "pyproject.toml" file was found, but editable mode currently requires a setuptools-based build.)
105
+ ```
106
+
107
+ You may need to upgrade pip to > 21.3 with the command `python3 -m pip install --upgrade pip`
108
+
109
+ ## Usage
110
+
111
+ The script `mergekit-yaml` is the main entry point for `mergekit`. It takes a YAML configuration file and an output path, like so:
112
+
113
+ ```sh
114
+ mergekit-yaml path/to/your/config.yml ./output-model-directory [--cuda] [--lazy-unpickle] [--allow-crimes] [... other options]
115
+ ```
116
+
117
+ This will run the merge and write your merged model to `./output-model-directory`.
118
+
119
+ For more information on the arguments accepted by `mergekit-yaml` run the command `mergekit-yaml --help`.
120
+
121
+ ### Uploading to Huggingface
122
+
123
+ When you have a merged model you're happy with, you may want to share it on the Hugging Face Hub. `mergekit` generates a `README.md` for your merge with some basic information for a model card. You can edit it to include more details about your merge, like giving it a good name or explaining what it's good at; rewrite it entirely; or use the generated `README.md` as-is. It is also possible to edit your `README.md` online once it has been uploaded to the Hub.
124
+
125
+ Once you're happy with your model card and merged model, you can upload it to the Hugging Face Hub using the [huggingface_hub](https://huggingface.co/docs/huggingface_hub/index) Python library.
126
+
127
+ ```sh
128
+ # log in to huggingface with an access token (must have write permission)
129
+ huggingface-cli login
130
+ # upload your model
131
+ huggingface-cli upload your_hf_username/my-cool-model ./output-model-directory .
132
+ ```
133
+
134
+ The [documentation](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-upload) for `huggingface_hub` goes into more detail about other options for uploading.
135
+
136
+ ## Merge Configuration
137
+
138
+ Merge configurations are YAML documents specifying the operations to perform in order to produce your merged model.
139
+ Below are the primary elements of a configuration file:
140
+
141
+ - `merge_method`: Specifies the method to use for merging models. See [Merge Methods](#merge-methods) for a list.
142
+ - `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`.
143
+ - `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`.
144
+ - `base_model`: Specifies the base model used in some merging methods.
145
+ - `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration.
146
+ - `dtype`: Specifies the data type used for the merging operation.
147
+ - `tokenizer` or `tokenizer_source`: Determines how to construct a tokenizer for the merged model.
148
+ - `chat_template`: Specifies a chat template for the merged model.
149
+
150
+ ### Parameter Specification
151
+
152
+ Parameters are flexible and can be set with varying precedence. They can be specified conditionally using tensor name filters, which allows finer control such as differentiating between attention heads and fully connected layers.
153
+
154
+ Parameters can be specified as:
155
+
156
+ - **Scalars**: Single floating-point values.
157
+ - **Gradients**: List of floating-point values, specifying an interpolated gradient.
158
+
159
+ The parameters can be set at different levels, with decreasing precedence as follows:
160
+
161
+ 1. `slices.*.sources.parameters` - applying to a specific input slice
162
+ 2. `slices.*.parameters` - applying to a specific output slice
163
+ 3. `models.*.parameters` or `input_model_parameters` - applying to any tensors coming from specific input models
164
+ 4. `parameters` - catchall
165
+
166
+ ### Tokenizer Configuration
167
+
168
+ The tokenizer behavior can be configured in two ways: using the new `tokenizer` field (recommended) or the legacy `tokenizer_source` field (maintained for backward compatibility). These fields are mutually exclusive - you should use one or the other, not both.
169
+
170
+ #### Modern Configuration (tokenizer)
171
+
172
+ The `tokenizer` field provides fine-grained control over vocabulary and embeddings:
173
+
174
+ ```yaml
175
+ tokenizer:
176
+ source: "union" # or "base" or a specific model path
177
+ tokens: # Optional: configure specific tokens
178
+ <token_name>:
179
+ source: ... # Specify embedding source
180
+ force: false # Optional: force this embedding for all models
181
+ pad_to_multiple_of: null # Optional: pad vocabulary size
182
+ ```
183
+
184
+ ##### Tokenizer Source
185
+
186
+ The `source` field determines the vocabulary of the output model:
187
+
188
+ - `union`: Combine vocabularies from all input models (default)
189
+ - `base`: Use vocabulary from the base model
190
+ - `"path/to/model"`: Use vocabulary from a specific model
191
+
192
+ ##### Token Embedding Handling
193
+
194
+ When merging models with different vocabularies, mergekit uses smart defaults to handle token embeddings:
195
+
196
+ - If a token exists in the base model, its embedding is used as the default
197
+ - If only one model has the token, that model's embedding is used
198
+ - Otherwise, an average of all available embeddings is used
199
+
200
+ You can override these defaults for specific tokens:
201
+
202
+ ```yaml
203
+ tokenizer:
204
+ source: union
205
+ tokens:
206
+ # Use embedding from a specific model
207
+ <|im_start|>:
208
+ source: "path/to/chatml/model"
209
+
210
+ # Force a specific embedding for all models
211
+ <|special|>:
212
+ source: "path/to/model"
213
+ force: true
214
+
215
+ # Map a token to another model's token embedding
216
+ <|renamed_token|>:
217
+ source:
218
+ kind: "model_token"
219
+ model: "path/to/model"
220
+ token: "<|original_token|>" # or use token_id: 1234
221
+ ```
222
+
223
+ ##### Practical Example
224
+
225
+ Here's how you might preserve both Llama 3 Instruct and ChatML prompt formats when merging models:
226
+
227
+ ```yaml
228
+ tokenizer:
229
+ source: union
230
+ tokens:
231
+ # ChatML tokens
232
+ <|im_start|>:
233
+ source: "chatml_model"
234
+ <|im_end|>:
235
+ source: "chatml_model"
236
+
237
+ # Llama 3 tokens - force original embeddings
238
+ <|start_header_id|>:
239
+ source: "llama3_model"
240
+ force: true
241
+ <|end_header_id|>:
242
+ source: "llama3_model"
243
+ force: true
244
+ <|eot_id|>:
245
+ source: "llama3_model"
246
+ force: true
247
+ ```
248
+
249
+ #### Legacy Configuration (tokenizer_source)
250
+
251
+ For backward compatibility, the `tokenizer_source` field is still supported:
252
+
253
+ ```yaml
254
+ tokenizer_source: "union" # or "base" or a model path
255
+ ```
256
+
257
+ This provides basic tokenizer selection but lacks the fine-grained control of the modern `tokenizer` field.
258
+
259
+ ### Chat Template Configuration
260
+
261
+ The optional `chat_template` field allows overriding the chat template used for the merged model.
262
+
263
+ ```yaml
264
+ chat_template: "auto" # or a template name or Jinja2 template
265
+ ```
266
+
267
+ Options include:
268
+
269
+ - `"auto"`: Automatically select the most common template among input models
270
+ - Built-in templates: `"alpaca"`, `"chatml"`, `"llama3"`, `"mistral"`, `"exaone"`
271
+ - A Jinja2 template string for custom formatting
272
+
273
+ ### Examples
274
+
275
+ Several examples of merge configurations are available in [`examples/`](examples/).
276
+
277
+ ## Merge Methods
278
+
279
+ A quick overview of the currently supported merge methods:
280
+
281
+ | Method | `merge_method` value | Multi-Model | Uses base model |
282
+ | ------------------------------------------------------------------------------------------------ | -------------------- | ----------- | --------------- |
283
+ | Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | ✅ | ❌ |
284
+ | SLERP | `slerp` | ❌ | ✅ |
285
+ | Nearswap | `nearswap` | ❌ | ✅ |
286
+ | [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | ✅ | ✅ |
287
+ | [TIES](https://arxiv.org/abs/2306.01708) | `ties` | ✅ | ✅ |
288
+ | [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | ✅ | ✅ |
289
+ | [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | ✅ | ✅ |
290
+ | Passthrough | `passthrough` | ❌ | ❌ |
291
+ | [Model Breadcrumbs](https://arxiv.org/abs/2312.06795) | `breadcrumbs` | ✅ | ✅ |
292
+ | [Model Breadcrumbs](https://arxiv.org/abs/2312.06795) + [TIES](https://arxiv.org/abs/2306.01708) | `breadcrumbs_ties` | ✅ | ✅ |
293
+ | [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | ✅ | ✅ |
294
+ | NuSLERP | `nuslerp` | ❌ | ✅ |
295
+ | [DELLA](https://arxiv.org/abs/2406.11617) | `della` | ✅ | ✅ |
296
+ | [DELLA](https://arxiv.org/abs/2406.11617) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `della_linear` | ✅ | ✅ |
297
+
298
+ ### Linear
299
+
300
+ The classic merge method - a simple weighted average.
301
+
302
+ Parameters:
303
+
304
+ - `weight` - relative (or absolute if `normalize=False`) weighting of a given tensor
305
+ - `normalize` - if true, the weights of all models contributing to a tensor will be normalized. Default behavior.
306
+
307
+ ### SLERP
308
+
309
+ Spherically interpolate the parameters of two models. One must be set as `base_model`.
310
+
311
+ Parameters:
312
+
313
+ - `t` - interpolation factor. At `t=0` will return `base_model`, at `t=1` will return the other one.
314
+
315
+ ### Nearswap
316
+
317
+ Interpolates base model with secondary model if similarity is below t. Accepts two models.
318
+
319
+ Parameters:
320
+
321
+ - `t` - similarity threshold
322
+
323
+ ### [Task Arithmetic](https://arxiv.org/abs/2212.04089)
324
+
325
+ Computes "task vectors" for each model by subtracting a base model. Merges the task vectors linearly and adds back the base. Works great for models that were fine tuned from a common ancestor. Also a super useful mental framework for several of the more involved merge methods.
326
+
327
+ Parameters: same as [Linear](#linear)
328
+
329
+ ### [TIES](https://arxiv.org/abs/2306.01708)
330
+
331
+ Builds on the task arithmetic framework. Resolves interference between models by sparsifying the task vectors and applying a sign consensus algorithm. Allows you to merge a larger number of models and retain more of their strengths.
332
+
333
+ Parameters: same as [Linear](#linear), plus:
334
+
335
+ - `density` - fraction of weights in differences from the base model to retain
336
+
337
+ ### [DARE](https://arxiv.org/abs/2311.03099)
338
+
339
+ In the same vein as TIES, sparsifies task vectors to reduce interference. Differs in that DARE uses random pruning with a novel rescaling to better match performance of the original models. DARE can be used either with the sign consensus algorithm of TIES (`dare_ties`) or without (`dare_linear`).
340
+
341
+ Parameters: same as [TIES](#ties) for `dare_ties`, or [Linear](#linear) for `dare_linear`
342
+
343
+ ### Passthrough
344
+
345
+ `passthrough` is a no-op that simply passes input tensors through unmodified. It is meant to be used for layer-stacking type merges where you have only one input model. Useful for frankenmerging.
346
+
347
+ ### [Model Breadcrumbs](https://arxiv.org/abs/2312.06795)
348
+
349
+ An extension of task arithmetic that discards both small and extremely large differences from the base model. As with DARE, the Model Breadcrumbs algorithm can be used with (`breadcrumbs_ties`) or without (`breadcrumbs`) the sign consensus algorithm of TIES.
350
+
351
+ Parameters: same as [Linear](#linear), plus:
352
+
353
+ - `density` - fraction of weights in differences from the base model to retain
354
+ - `gamma` - fraction of largest magnitude differences to remove
355
+
356
+ Note that `gamma` corresponds with the parameter `β` described in the paper, while `density` is the final density of the sparsified tensors (related to `γ` and `β` by `density = 1 - γ - β`). For good default values, try `density: 0.9` and `gamma: 0.01`.
357
+
358
+ ### [Model Stock](https://arxiv.org/abs/2403.19522)
359
+
360
+ Uses some neat geometric properties of fine tuned models to compute good weights for linear interpolation. Requires at least three models, including a base model.
361
+
362
+ Parameters:
363
+
364
+ - `filter_wise`: if true, weight calculation will be per-row rather than per-tensor. Not recommended.
365
+
366
+ ### NuSLERP
367
+
368
+ Spherically interpolate between parameters, but with more options and more sensical configuration! Does not require a base model, but can use one to do spherical interpolation of task vectors. Only works with either two models or two plus a base model.
369
+
370
+ Parameters:
371
+
372
+ - `weight`: relative weighting of a given tensor
373
+ - `nuslerp_flatten`: set to false to do row-wise/column-wise interpolation instead of treating tensors as vectors
374
+ - `nuslerp_row_wise`: SLERP row vectors instead of column vectors
375
+
376
+ To replicate the behavior of the original `slerp` method, set `weight` to `1-t` and `t` for your first and second model respectively.
377
+
378
+ ### [DELLA](https://arxiv.org/abs/2406.11617)
379
+
380
+ Building upon DARE, DELLA uses adaptive pruning based on parameter magnitudes. DELLA first ranks parameters in each row of delta parameters and assigns drop probabilities inversely proportional to their magnitudes. This allows it to retain more important changes while reducing interference. After pruning, it rescales the remaining parameters similar to [DARE](#dare). DELLA can be used with (`della`) or without (`della_linear`) the sign elect step of TIES
381
+
382
+ Parameters: same as [Linear](#linear), plus:
383
+
384
+ - `density` - fraction of weights in differences from the base model to retain
385
+ - `epsilon` - maximum change in drop probability based on magnitude. Drop probabilities assigned will range from `density - epsilon` to `density + epsilon`. (When selecting values for `density` and `epsilon`, ensure that the range of probabilities falls within 0 to 1)
386
+ - `lambda` - scaling factor for the final merged delta parameters before merging with the base parameters.
387
+
388
+ ## LoRA extraction
389
+
390
+ Mergekit allows extracting PEFT-compatible low-rank approximations of finetuned models.
391
+
392
+ ### Usage
393
+
394
+ ```sh
395
+ mergekit-extract-lora finetuned_model_id_or_path base_model_id_or_path output_path [--no-lazy-unpickle] --rank=desired_rank
396
+ ```
397
+
398
+ ## Mixture of Experts merging
399
+
400
+ The `mergekit-moe` script supports merging multiple dense models into a mixture of experts, either for direct use or for further training. For more details see the [`mergekit-moe` documentation](docs/moe.md).
401
+
402
+ ## Evolutionary merge methods
403
+
404
+ See [`docs/evolve.md`](docs/evolve.md) for details.
405
+
406
+ ## ✨ Merge in the Cloud ✨
407
+
408
+ We host merging on Arcee's cloud GPUs - you can launch a cloud merge in the [Arcee App](https://app.arcee.ai). Or through python - grab an ARCEE_API_KEY:
409
+
410
+ `export ARCEE_API_KEY=<your-api-key>`
411
+ `pip install -q arcee-py`
412
+
413
+ ```python
414
+ import arcee
415
+ arcee.merge_yaml("bio-merge","./examples/bio-merge.yml")
416
+ ```
417
+
418
+ Check your merge status at the [Arcee App](https://app.arcee.ai)
419
+
420
+ When complete, either deploy your merge:
421
+
422
+ ```python
423
+ arcee.start_deployment("bio-merge", merging="bio-merge")
424
+ ```
425
+
426
+ Or download your merge:
427
+
428
+ `!arcee merging download bio-merge`
429
+
430
+ ## Citation
431
+
432
+ If you find `mergekit` useful in your research, please consider citing the [paper](https://aclanthology.org/2024.emnlp-industry.36/):
433
+
434
+ ```bibtex
435
+ @inproceedings{goddard-etal-2024-arcees,
436
+ title = "Arcee{'}s {M}erge{K}it: A Toolkit for Merging Large Language Models",
437
+ author = "Goddard, Charles and
438
+ Siriwardhana, Shamane and
439
+ Ehghaghi, Malikeh and
440
+ Meyers, Luke and
441
+ Karpukhin, Vladimir and
442
+ Benedict, Brian and
443
+ McQuade, Mark and
444
+ Solawetz, Jacob",
445
+ editor = "Dernoncourt, Franck and
446
+ Preo{\c{t}}iuc-Pietro, Daniel and
447
+ Shimorina, Anastasia",
448
+ booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track",
449
+ month = nov,
450
+ year = "2024",
451
+ address = "Miami, Florida, US",
452
+ publisher = "Association for Computational Linguistics",
453
+ url = "https://aclanthology.org/2024.emnlp-industry.36",
454
+ doi = "10.18653/v1/2024.emnlp-industry.36",
455
+ pages = "477--485",
456
+ abstract = "The rapid growth of open-source language models provides the opportunity to merge model checkpoints, combining their parameters to improve performance and versatility. Advances in transfer learning have led to numerous task-specific models, which model merging can integrate into powerful multitask models without additional training. MergeKit is an open-source library designed to support this process with an efficient and extensible framework suitable for any hardware. It has facilitated the merging of thousands of models, contributing to some of the world{'}s most powerful open-source model checkpoints. The library is accessible at: https://github.com/arcee-ai/mergekit.",
457
+ }
458
+ ```
mergekit/mergekit.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LICENSE
2
+ README.md
3
+ pyproject.toml
4
+ mergekit/__init__.py
5
+ mergekit/architecture.py
6
+ mergekit/card.py
7
+ mergekit/common.py
8
+ mergekit/config.py
9
+ mergekit/graph.py
10
+ mergekit/merge.py
11
+ mergekit/options.py
12
+ mergekit/plan.py
13
+ mergekit/sparsify.py
14
+ mergekit.egg-info/PKG-INFO
15
+ mergekit.egg-info/SOURCES.txt
16
+ mergekit.egg-info/dependency_links.txt
17
+ mergekit.egg-info/entry_points.txt
18
+ mergekit.egg-info/requires.txt
19
+ mergekit.egg-info/top_level.txt
20
+ mergekit/_data/__init__.py
21
+ mergekit/_data/architectures/__init__.py
22
+ mergekit/_data/architectures/baichuan.json
23
+ mergekit/_data/architectures/bert-masked-lm.json
24
+ mergekit/_data/architectures/bert-sequence-classification.json
25
+ mergekit/_data/architectures/bert.json
26
+ mergekit/_data/architectures/chatglm.json
27
+ mergekit/_data/architectures/cohere.json
28
+ mergekit/_data/architectures/distilbert-masked-lm.json
29
+ mergekit/_data/architectures/distilbert-sequence-classification.json
30
+ mergekit/_data/architectures/distilbert-token-classification.json
31
+ mergekit/_data/architectures/distilbert.json
32
+ mergekit/_data/architectures/exaone.json
33
+ mergekit/_data/architectures/falcon.json
34
+ mergekit/_data/architectures/gemma.json
35
+ mergekit/_data/architectures/gemma2.json
36
+ mergekit/_data/architectures/gpt-neox.json
37
+ mergekit/_data/architectures/gpt2-sequence-classification.json
38
+ mergekit/_data/architectures/gpt2.json
39
+ mergekit/_data/architectures/gptbigcode.json
40
+ mergekit/_data/architectures/internlm2.json
41
+ mergekit/_data/architectures/jais.json
42
+ mergekit/_data/architectures/llama.json
43
+ mergekit/_data/architectures/mamba.json
44
+ mergekit/_data/architectures/mistral.json
45
+ mergekit/_data/architectures/phi-1.json
46
+ mergekit/_data/architectures/phi2-old.json
47
+ mergekit/_data/architectures/phi2.json
48
+ mergekit/_data/architectures/phi3-small.json
49
+ mergekit/_data/architectures/phi3.json
50
+ mergekit/_data/architectures/qwen.json
51
+ mergekit/_data/architectures/qwen2.json
52
+ mergekit/_data/architectures/roberta-masked-lm.json
53
+ mergekit/_data/architectures/roberta-sequence-classification.json
54
+ mergekit/_data/architectures/roberta-token-classification.json
55
+ mergekit/_data/architectures/roberta.json
56
+ mergekit/_data/architectures/solar.json
57
+ mergekit/_data/architectures/stablelm.json
58
+ mergekit/_data/architectures/stablelm2.json
59
+ mergekit/_data/architectures/starcoder2.json
60
+ mergekit/_data/chat_templates/__init__.py
61
+ mergekit/_data/chat_templates/alpaca.jinja
62
+ mergekit/_data/chat_templates/chatml.jinja
63
+ mergekit/_data/chat_templates/exaone.jinja
64
+ mergekit/_data/chat_templates/llama3.jinja
65
+ mergekit/_data/chat_templates/mistral.jinja
66
+ mergekit/evo/__init__.py
67
+ mergekit/evo/actors.py
68
+ mergekit/evo/config.py
69
+ mergekit/evo/genome.py
70
+ mergekit/evo/helpers.py
71
+ mergekit/evo/monkeypatch.py
72
+ mergekit/evo/strategy.py
73
+ mergekit/io/__init__.py
74
+ mergekit/io/lazy_tensor_loader.py
75
+ mergekit/io/lazy_unpickle.py
76
+ mergekit/io/loader.py
77
+ mergekit/io/tasks.py
78
+ mergekit/io/tensor_writer.py
79
+ mergekit/merge_methods/__init__.py
80
+ mergekit/merge_methods/base.py
81
+ mergekit/merge_methods/generalized_task_arithmetic.py
82
+ mergekit/merge_methods/linear.py
83
+ mergekit/merge_methods/model_stock.py
84
+ mergekit/merge_methods/nearswap.py
85
+ mergekit/merge_methods/nuslerp.py
86
+ mergekit/merge_methods/passthrough.py
87
+ mergekit/merge_methods/rectify_embed.py
88
+ mergekit/merge_methods/slerp.py
89
+ mergekit/merge_methods/tokenizer_permute.py
90
+ mergekit/moe/__init__.py
91
+ mergekit/moe/arch.py
92
+ mergekit/moe/common.py
93
+ mergekit/moe/config.py
94
+ mergekit/moe/deepseek.py
95
+ mergekit/moe/mixtral.py
96
+ mergekit/moe/qwen.py
97
+ mergekit/moe/router.py
98
+ mergekit/scripts/__init__.py
99
+ mergekit/scripts/bakllama.py
100
+ mergekit/scripts/evolve.py
101
+ mergekit/scripts/extract_lora.py
102
+ mergekit/scripts/layershuffle.py
103
+ mergekit/scripts/legacy.py
104
+ mergekit/scripts/megamerge.py
105
+ mergekit/scripts/moe.py
106
+ mergekit/scripts/run_yaml.py
107
+ mergekit/scripts/tokensurgeon.py
108
+ mergekit/tokenizer/__init__.py
109
+ mergekit/tokenizer/build.py
110
+ mergekit/tokenizer/config.py
111
+ mergekit/tokenizer/embed.py
112
+ tests/test_basic_merges.py
113
+ tests/test_chat_template.py
114
+ tests/test_graph.py
115
+ tests/test_io.py
116
+ tests/test_lazy_unpickle.py
117
+ tests/test_modelref.py
118
+ tests/test_sparsify.py
119
+ tests/test_tokenizer.py
mergekit/mergekit.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
mergekit/mergekit.egg-info/entry_points.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ [console_scripts]
2
+ bakllama = mergekit.scripts.bakllama:main
3
+ mergekit-evolve = mergekit.scripts.evolve:main
4
+ mergekit-extract-lora = mergekit.scripts.extract_lora:main
5
+ mergekit-layershuffle = mergekit.scripts.layershuffle:main
6
+ mergekit-legacy = mergekit.scripts.legacy:main
7
+ mergekit-mega = mergekit.scripts.megamerge:main
8
+ mergekit-moe = mergekit.scripts.moe:main
9
+ mergekit-tokensurgeon = mergekit.scripts.tokensurgeon:main
10
+ mergekit-yaml = mergekit.scripts.run_yaml:main
mergekit/mergekit.egg-info/requires.txt ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch>=2.0.0
2
+ tqdm==4.66.5
3
+ click==8.1.7
4
+ safetensors~=0.4.3
5
+ accelerate~=1.0.1
6
+ pydantic~=2.9.2
7
+ immutables==0.20
8
+ transformers>=4.45.2
9
+ tokenizers>=0.20.1
10
+ huggingface_hub
11
+ peft
12
+ typing-extensions
13
+ sentencepiece
14
+ protobuf
15
+ scipy
16
+ datasets
17
+
18
+ [dev]
19
+ black~=24.10.0
20
+ isort~=5.13.2
21
+ pre-commit~=4.0.1
22
+
23
+ [evolve]
24
+ ray
25
+ cma
26
+ lm_eval
27
+ wandb
28
+
29
+ [test]
30
+ pytest~=8.3.3
31
+
32
+ [vllm]
33
+ vllm==0.3.2
34
+ lm_eval[vllm]
mergekit/mergekit.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ mergekit
mergekit/mergekit/__init__.py ADDED
File without changes
mergekit/mergekit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (138 Bytes). View file
 
mergekit/mergekit/__pycache__/architecture.cpython-310.pyc ADDED
Binary file (14.1 kB). View file
 
mergekit/mergekit/__pycache__/card.cpython-310.pyc ADDED
Binary file (5.69 kB). View file
 
mergekit/mergekit/__pycache__/common.cpython-310.pyc ADDED
Binary file (8.7 kB). View file
 
mergekit/mergekit/__pycache__/config.cpython-310.pyc ADDED
Binary file (7.03 kB). View file
 
mergekit/mergekit/__pycache__/graph.cpython-310.pyc ADDED
Binary file (8 kB). View file
 
mergekit/mergekit/__pycache__/merge.cpython-310.pyc ADDED
Binary file (6.58 kB). View file
 
mergekit/mergekit/__pycache__/options.cpython-310.pyc ADDED
Binary file (3.44 kB). View file
 
mergekit/mergekit/__pycache__/plan.cpython-310.pyc ADDED
Binary file (8.53 kB). View file
 
mergekit/mergekit/__pycache__/sparsify.cpython-310.pyc ADDED
Binary file (4.46 kB). View file
 
mergekit/mergekit/_data/__init__.py ADDED
File without changes
mergekit/mergekit/_data/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (144 Bytes). View file
 
mergekit/mergekit/_data/architectures/__init__.py ADDED
File without changes
mergekit/mergekit/_data/architectures/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (158 Bytes). View file
 
mergekit/mergekit/_data/architectures/baichuan.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "baichuan",
3
+ "architectures": [
4
+ "BaichuanForCausalLM"
5
+ ],
6
+ "pre_weights": [
7
+ {
8
+ "name": "model.embed_tokens.weight",
9
+ "is_embed": true
10
+ }
11
+ ],
12
+ "post_weights": [
13
+ {
14
+ "name": "model.norm.weight"
15
+ },
16
+ {
17
+ "name": "lm_head.weight",
18
+ "is_embed": true
19
+ }
20
+ ],
21
+ "num_layers_config_key": "num_hidden_layers",
22
+ "layer_templates": {
23
+ "weights": [
24
+ {
25
+ "name": "model.layers.${layer_index}.input_layernorm.weight"
26
+ },
27
+ {
28
+ "name": "model.layers.${layer_index}.self_attn.W_pack.weight"
29
+ },
30
+ {
31
+ "name": "model.layers.${layer_index}.self_attn.o_proj.weight"
32
+ },
33
+ {
34
+ "name": "model.layers.${layer_index}.post_attention_layernorm.weight"
35
+ },
36
+ {
37
+ "name": "model.layers.${layer_index}.mlp.gate_proj.weight"
38
+ },
39
+ {
40
+ "name": "model.layers.${layer_index}.mlp.down_proj.weight"
41
+ },
42
+ {
43
+ "name": "model.layers.${layer_index}.mlp.up_proj.weight"
44
+ }
45
+ ]
46
+ }
47
+ }
mergekit/mergekit/_data/architectures/bert-masked-lm.json ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "bert",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "pre_weights": [
7
+ {
8
+ "name": "bert.embeddings.position_embeddings.weight"
9
+ },
10
+ {
11
+ "name": "bert.embeddings.token_type_embeddings.weight"
12
+ },
13
+ {
14
+ "name": "bert.embeddings.word_embeddings.weight",
15
+ "is_embed": true
16
+ },
17
+ {
18
+ "name": "bert.embeddings.LayerNorm.bias",
19
+ "aliases": [
20
+ "bert.embeddings.LayerNorm.beta"
21
+ ]
22
+ },
23
+ {
24
+ "name": "bert.embeddings.LayerNorm.weight",
25
+ "aliases": [
26
+ "bert.embeddings.LayerNorm.gamma"
27
+ ]
28
+ },
29
+ {
30
+ "name": "bert.embeddings.position_ids",
31
+ "optional": true,
32
+ "force_dtype": "int64"
33
+ }
34
+ ],
35
+ "post_weights": [
36
+ {
37
+ "name": "bert.pooler.dense.weight"
38
+ },
39
+ {
40
+ "name": "bert.pooler.dense.bias"
41
+ },
42
+ {
43
+ "name": "cls.predictions.bias"
44
+ },
45
+ {
46
+ "name": "cls.predictions.decoder.weight",
47
+ "optional": true,
48
+ "tied_names": [
49
+ "bert.embeddings.word_embeddings.weight"
50
+ ],
51
+ "is_embed": true
52
+ }
53
+ ],
54
+ "num_layers_config_key": "num_hidden_layers",
55
+ "layer_templates": {
56
+ "weights": [
57
+ {
58
+ "name": "bert.encoder.layer.${layer_index}.attention.self.query.weight"
59
+ },
60
+ {
61
+ "name": "bert.encoder.layer.${layer_index}.attention.self.query.bias"
62
+ },
63
+ {
64
+ "name": "bert.encoder.layer.${layer_index}.attention.self.key.weight"
65
+ },
66
+ {
67
+ "name": "bert.encoder.layer.${layer_index}.attention.self.key.bias"
68
+ },
69
+ {
70
+ "name": "bert.encoder.layer.${layer_index}.attention.self.value.weight"
71
+ },
72
+ {
73
+ "name": "bert.encoder.layer.${layer_index}.attention.self.value.bias"
74
+ },
75
+ {
76
+ "name": "bert.encoder.layer.${layer_index}.attention.output.dense.weight"
77
+ },
78
+ {
79
+ "name": "bert.encoder.layer.${layer_index}.attention.output.dense.bias"
80
+ },
81
+ {
82
+ "name": "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.bias",
83
+ "aliases": [
84
+ "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.beta"
85
+ ]
86
+ },
87
+ {
88
+ "name": "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.weight",
89
+ "aliases": [
90
+ "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.gamma"
91
+ ]
92
+ },
93
+ {
94
+ "name": "bert.encoder.layer.${layer_index}.intermediate.dense.weight"
95
+ },
96
+ {
97
+ "name": "bert.encoder.layer.${layer_index}.intermediate.dense.bias"
98
+ },
99
+ {
100
+ "name": "bert.encoder.layer.${layer_index}.output.dense.weight"
101
+ },
102
+ {
103
+ "name": "bert.encoder.layer.${layer_index}.output.dense.bias"
104
+ },
105
+ {
106
+ "name": "bert.encoder.layer.${layer_index}.output.LayerNorm.bias",
107
+ "aliases": [
108
+ "bert.encoder.layer.${layer_index}.output.LayerNorm.beta"
109
+ ]
110
+ },
111
+ {
112
+ "name": "bert.encoder.layer.${layer_index}.output.LayerNorm.weight",
113
+ "aliases": [
114
+ "bert.encoder.layer.${layer_index}.output.LayerNorm.gamma"
115
+ ]
116
+ }
117
+ ]
118
+ }
119
+ }
mergekit/mergekit/_data/architectures/bert-sequence-classification.json ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "bert",
3
+ "architectures": [
4
+ "BertForSequenceClassification",
5
+ "BertForMultipleChoice",
6
+ "BertForTokenClassification"
7
+ ],
8
+ "pre_weights": [
9
+ {
10
+ "name": "bert.embeddings.position_embeddings.weight"
11
+ },
12
+ {
13
+ "name": "bert.embeddings.token_type_embeddings.weight"
14
+ },
15
+ {
16
+ "name": "bert.embeddings.word_embeddings.weight",
17
+ "is_embed": true
18
+ },
19
+ {
20
+ "name": "bert.embeddings.LayerNorm.bias",
21
+ "aliases": [
22
+ "bert.embeddings.LayerNorm.beta"
23
+ ]
24
+ },
25
+ {
26
+ "name": "bert.embeddings.LayerNorm.weight",
27
+ "aliases": [
28
+ "bert.embeddings.LayerNorm.gamma"
29
+ ]
30
+ },
31
+ {
32
+ "name": "bert.embeddings.position_ids",
33
+ "optional": true,
34
+ "force_dtype": "int64"
35
+ }
36
+ ],
37
+ "post_weights": [
38
+ {
39
+ "name": "bert.pooler.dense.weight",
40
+ "optional": true
41
+ },
42
+ {
43
+ "name": "bert.pooler.dense.bias",
44
+ "optional": true
45
+ },
46
+ {
47
+ "name": "classifier.bias"
48
+ },
49
+ {
50
+ "name": "classifier.weight"
51
+ }
52
+ ],
53
+ "num_layers_config_key": "num_hidden_layers",
54
+ "layer_templates": {
55
+ "weights": [
56
+ {
57
+ "name": "bert.encoder.layer.${layer_index}.attention.self.query.weight"
58
+ },
59
+ {
60
+ "name": "bert.encoder.layer.${layer_index}.attention.self.query.bias"
61
+ },
62
+ {
63
+ "name": "bert.encoder.layer.${layer_index}.attention.self.key.weight"
64
+ },
65
+ {
66
+ "name": "bert.encoder.layer.${layer_index}.attention.self.key.bias"
67
+ },
68
+ {
69
+ "name": "bert.encoder.layer.${layer_index}.attention.self.value.weight"
70
+ },
71
+ {
72
+ "name": "bert.encoder.layer.${layer_index}.attention.self.value.bias"
73
+ },
74
+ {
75
+ "name": "bert.encoder.layer.${layer_index}.attention.output.dense.weight"
76
+ },
77
+ {
78
+ "name": "bert.encoder.layer.${layer_index}.attention.output.dense.bias"
79
+ },
80
+ {
81
+ "name": "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.bias",
82
+ "aliases": [
83
+ "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.beta"
84
+ ]
85
+ },
86
+ {
87
+ "name": "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.weight",
88
+ "aliases": [
89
+ "bert.encoder.layer.${layer_index}.attention.output.LayerNorm.gamma"
90
+ ]
91
+ },
92
+ {
93
+ "name": "bert.encoder.layer.${layer_index}.intermediate.dense.weight"
94
+ },
95
+ {
96
+ "name": "bert.encoder.layer.${layer_index}.intermediate.dense.bias"
97
+ },
98
+ {
99
+ "name": "bert.encoder.layer.${layer_index}.output.dense.weight"
100
+ },
101
+ {
102
+ "name": "bert.encoder.layer.${layer_index}.output.dense.bias"
103
+ },
104
+ {
105
+ "name": "bert.encoder.layer.${layer_index}.output.LayerNorm.bias",
106
+ "aliases": [
107
+ "bert.encoder.layer.${layer_index}.output.LayerNorm.beta"
108
+ ]
109
+ },
110
+ {
111
+ "name": "bert.encoder.layer.${layer_index}.output.LayerNorm.weight",
112
+ "aliases": [
113
+ "bert.encoder.layer.${layer_index}.output.LayerNorm.gamma"
114
+ ]
115
+ }
116
+ ]
117
+ }
118
+ }