metadata
tags:
- spacy
- token-classification
- text-classification
language:
- en
model-index:
- name: en_med12_trf
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8630460449
- name: NER Recall
type: recall
value: 0.8640661939
- name: NER F Score
type: f_score
value: 0.8635558181
Feature | Description |
---|---|
Name | en_med12_trf |
Version | 1 |
spaCy | >=3.4.1,<3.5.0 |
Default Pipeline | tok2vec , transformer , ner , textcat |
Components | tok2vec , transformer , ner , textcat |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (14 labels for 2 components)
Component | Labels |
---|---|
ner |
Denominator_Unit , Denominator_Value , Dose_Form , Medication_Name , NDC , Numerator_Unit , Numerator_Value , Product_Package_Type , Product_Package_Type_Value , Quantity_Factor_Unit , Quantity_Factor_Unit_Value , Quantity_Factor_Value |
textcat |
MEDICATION , OTHER |
Accuracy
Type | Score |
---|---|
ENTS_F |
86.36 |
ENTS_P |
86.30 |
ENTS_R |
86.41 |
CATS_SCORE |
96.85 |
CATS_MICRO_P |
93.61 |
CATS_MICRO_R |
99.64 |
CATS_MICRO_F |
96.53 |
CATS_MACRO_P |
94.24 |
CATS_MACRO_R |
99.61 |
CATS_MACRO_F |
96.85 |
CATS_MACRO_AUC |
99.68 |
CATS_MACRO_AUC_PER_TYPE |
0.00 |
TOK2VEC_LOSS |
0.00 |
TRANSFORMER_LOSS |
131016.45 |
NER_LOSS |
28078.22 |
TEXTCAT_LOSS |
1261.44 |