|
--- |
|
license: apache-2.0 |
|
base_model: facebook/detr-resnet-101 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
model-index: |
|
- name: detr-resnet-101_adafactor_finetuned_food-roboflow |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# detr-resnet-101_adafactor_finetuned_food-roboflow |
|
|
|
This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.1003 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 6.5311 | 0.77 | 50 | 6.4188 | |
|
| 5.6597 | 1.54 | 100 | 5.8132 | |
|
| 5.1568 | 2.31 | 150 | 5.1265 | |
|
| 4.4672 | 3.08 | 200 | 4.3264 | |
|
| 3.8033 | 3.85 | 250 | 3.9444 | |
|
| 3.2053 | 4.62 | 300 | 3.6319 | |
|
| 3.127 | 5.38 | 350 | 3.3079 | |
|
| 2.9082 | 6.15 | 400 | 3.1760 | |
|
| 2.8546 | 6.92 | 450 | 3.1659 | |
|
| 2.8393 | 7.69 | 500 | 3.0233 | |
|
| 2.6973 | 8.46 | 550 | 3.0817 | |
|
| 2.7047 | 9.23 | 600 | 3.0849 | |
|
| 2.673 | 10.0 | 650 | 3.1122 | |
|
| 2.6781 | 10.77 | 700 | 3.0709 | |
|
| 2.5901 | 11.54 | 750 | 3.0382 | |
|
| 2.6568 | 12.31 | 800 | 3.0246 | |
|
| 2.5929 | 13.08 | 850 | 3.0384 | |
|
| 2.5709 | 13.85 | 900 | 2.9862 | |
|
| 2.5784 | 14.62 | 950 | 3.1003 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|