karanthgreeshma
commited on
Commit
•
877248c
1
Parent(s):
89bddb2
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- common_voice_13_0
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: wav2vec2-large-300m-colab-only-gn
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: common_voice_13_0
|
18 |
+
type: common_voice_13_0
|
19 |
+
config: gn
|
20 |
+
split: test
|
21 |
+
args: gn
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.5229303156640858
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# wav2vec2-large-300m-colab-only-gn
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5274
|
36 |
+
- Wer: 0.5229
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0003
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 2
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_steps: 100
|
64 |
+
- num_epochs: 30
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
70 |
+
| 20.8148 | 0.45 | 25 | 13.5976 | 1.0 |
|
71 |
+
| 7.0188 | 0.9 | 50 | 5.5263 | 1.0 |
|
72 |
+
| 4.1285 | 1.35 | 75 | 3.6078 | 1.0 |
|
73 |
+
| 3.338 | 1.8 | 100 | 3.3217 | 1.0 |
|
74 |
+
| 3.2829 | 2.25 | 125 | 3.2781 | 1.0 |
|
75 |
+
| 3.272 | 2.7 | 150 | 3.2601 | 1.0 |
|
76 |
+
| 3.2224 | 3.15 | 175 | 3.2234 | 1.0 |
|
77 |
+
| 3.1949 | 3.6 | 200 | 3.1998 | 1.0 |
|
78 |
+
| 3.1846 | 4.05 | 225 | 3.1841 | 1.0 |
|
79 |
+
| 3.1615 | 4.5 | 250 | 3.1719 | 1.0 |
|
80 |
+
| 3.1367 | 4.95 | 275 | 3.1132 | 1.0 |
|
81 |
+
| 3.0111 | 5.41 | 300 | 2.9344 | 1.0 |
|
82 |
+
| 2.7786 | 5.86 | 325 | 2.5643 | 1.0 |
|
83 |
+
| 2.2106 | 6.31 | 350 | 1.8132 | 1.0 |
|
84 |
+
| 1.6365 | 6.76 | 375 | 1.4008 | 0.9982 |
|
85 |
+
| 1.178 | 7.21 | 400 | 1.0678 | 0.9845 |
|
86 |
+
| 0.8903 | 7.66 | 425 | 0.8744 | 0.9369 |
|
87 |
+
| 0.7429 | 8.11 | 450 | 0.7213 | 0.8752 |
|
88 |
+
| 0.5931 | 8.56 | 475 | 0.6681 | 0.8189 |
|
89 |
+
| 0.5592 | 9.01 | 500 | 0.6622 | 0.7895 |
|
90 |
+
| 0.4316 | 9.46 | 525 | 0.6177 | 0.7644 |
|
91 |
+
| 0.4098 | 9.91 | 550 | 0.5599 | 0.7874 |
|
92 |
+
| 0.3176 | 10.36 | 575 | 0.5649 | 0.7001 |
|
93 |
+
| 0.3142 | 10.81 | 600 | 0.5828 | 0.6867 |
|
94 |
+
| 0.3227 | 11.26 | 625 | 0.5505 | 0.6736 |
|
95 |
+
| 0.275 | 11.71 | 650 | 0.5432 | 0.6540 |
|
96 |
+
| 0.2783 | 12.16 | 675 | 0.5372 | 0.6462 |
|
97 |
+
| 0.2316 | 12.61 | 700 | 0.5078 | 0.6379 |
|
98 |
+
| 0.2281 | 13.06 | 725 | 0.5059 | 0.6161 |
|
99 |
+
| 0.2191 | 13.51 | 750 | 0.5175 | 0.5956 |
|
100 |
+
| 0.1911 | 13.96 | 775 | 0.5216 | 0.5929 |
|
101 |
+
| 0.1731 | 14.41 | 800 | 0.5069 | 0.5789 |
|
102 |
+
| 0.1743 | 14.86 | 825 | 0.5207 | 0.5971 |
|
103 |
+
| 0.1755 | 15.32 | 850 | 0.5436 | 0.6307 |
|
104 |
+
| 0.1568 | 15.77 | 875 | 0.5374 | 0.6001 |
|
105 |
+
| 0.1629 | 16.22 | 900 | 0.5429 | 0.6102 |
|
106 |
+
| 0.1418 | 16.67 | 925 | 0.5089 | 0.5762 |
|
107 |
+
| 0.136 | 17.12 | 950 | 0.5291 | 0.5878 |
|
108 |
+
| 0.1354 | 17.57 | 975 | 0.5381 | 0.5840 |
|
109 |
+
| 0.1351 | 18.02 | 1000 | 0.5511 | 0.5947 |
|
110 |
+
| 0.1252 | 18.47 | 1025 | 0.5204 | 0.5643 |
|
111 |
+
| 0.1215 | 18.92 | 1050 | 0.5385 | 0.5613 |
|
112 |
+
| 0.1188 | 19.37 | 1075 | 0.5063 | 0.5718 |
|
113 |
+
| 0.1209 | 19.82 | 1100 | 0.5211 | 0.5488 |
|
114 |
+
| 0.1091 | 20.27 | 1125 | 0.5245 | 0.5557 |
|
115 |
+
| 0.112 | 20.72 | 1150 | 0.4910 | 0.5587 |
|
116 |
+
| 0.102 | 21.17 | 1175 | 0.5192 | 0.5581 |
|
117 |
+
| 0.0947 | 21.62 | 1200 | 0.5500 | 0.5718 |
|
118 |
+
| 0.1066 | 22.07 | 1225 | 0.5288 | 0.5488 |
|
119 |
+
| 0.1011 | 22.52 | 1250 | 0.5180 | 0.5438 |
|
120 |
+
| 0.0974 | 22.97 | 1275 | 0.5089 | 0.5277 |
|
121 |
+
| 0.0926 | 23.42 | 1300 | 0.5222 | 0.5301 |
|
122 |
+
| 0.0871 | 23.87 | 1325 | 0.5135 | 0.5366 |
|
123 |
+
| 0.0808 | 24.32 | 1350 | 0.4990 | 0.5331 |
|
124 |
+
| 0.0739 | 24.77 | 1375 | 0.5281 | 0.5351 |
|
125 |
+
| 0.0841 | 25.23 | 1400 | 0.5321 | 0.5360 |
|
126 |
+
| 0.0743 | 25.68 | 1425 | 0.5508 | 0.5447 |
|
127 |
+
| 0.0809 | 26.13 | 1450 | 0.5228 | 0.5396 |
|
128 |
+
| 0.0631 | 26.58 | 1475 | 0.5284 | 0.5351 |
|
129 |
+
| 0.0788 | 27.03 | 1500 | 0.5250 | 0.5289 |
|
130 |
+
| 0.0754 | 27.48 | 1525 | 0.5204 | 0.5259 |
|
131 |
+
| 0.0663 | 27.93 | 1550 | 0.5275 | 0.5313 |
|
132 |
+
| 0.0645 | 28.38 | 1575 | 0.5288 | 0.5259 |
|
133 |
+
| 0.0729 | 28.83 | 1600 | 0.5268 | 0.5259 |
|
134 |
+
| 0.0656 | 29.28 | 1625 | 0.5277 | 0.5232 |
|
135 |
+
| 0.0703 | 29.73 | 1650 | 0.5274 | 0.5229 |
|
136 |
+
|
137 |
+
|
138 |
+
### Framework versions
|
139 |
+
|
140 |
+
- Transformers 4.34.1
|
141 |
+
- Pytorch 2.0.1+cu118
|
142 |
+
- Datasets 2.14.6
|
143 |
+
- Tokenizers 0.14.1
|