ynakashima commited on
Commit
69b4bb1
1 Parent(s): 996bcd4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -181
README.md CHANGED
@@ -1,199 +1,141 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - OpenAssistant/oasst2
6
+ - nvidia/HelpSteer
7
+ language:
8
+ - en
9
+ - ja
10
+ tags:
11
+ - mistral
12
+ - steerlm
13
+ base_model: mistral-community/Mistral-7B-v0.2
14
  ---
15
 
16
+ # KARAKURI LM 7B APM v0.2
 
 
 
 
17
 
18
  ## Model Details
19
 
20
  ### Model Description
21
 
22
+ - **Developed by:** [KARAKURI Inc.](https://about.karakuri.ai/)
23
+ - **Model type:** Causal decoder-only transformer language model
24
+ - **Languages**: Primarily English
25
+ - **License:** Apache 2.0
26
+ - **Finetuned from model:** [mistral-community/Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2)
27
+ - **Contact**: For questions and comments about the model, please email `karakuri-rd@karakuri.ai`
28
+
29
+ ## Usage
30
+
31
+ KARAKURI LM 7B APM v0.2 is a attribute prediction model that rates model responses on various aspects that makes a response desirable.
32
+
33
+ Given a conversation with multiple turns between user and assistant, the model rates the following attributes (between 0 and 4) for every assistant turn.
34
+
35
+ - helpfulness: Overall helpfulness of the response to the prompt.
36
+ - correctness: Inclusion of all pertinent facts without errors.
37
+ - coherence: Consistency and clarity of expression.
38
+ - complexity: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
39
+ - verbosity: Amount of detail included in the response, relative to what is asked for in the prompt.
40
+ - quality: Perceived goodness of response.
41
+ - toxicity: Undesirable elements such as vulgar, harmful or potentially biased response.
42
+ - humor: Sense of humor within response.
43
+ - creativity: Willingness to generate non-conventional response.
44
+
45
+ The first five are derived from HelpSteer, while the remaining four are derived from OASST2.
46
+
47
+ You can run the model using the 🤗 Transformers:
48
+
49
+ ```python
50
+ from transformers import AutoModelForCausalLM, AutoTokenizer
51
+
52
+ model_id = "karakuri-ai/karakuri-lm-7b-apm-v0.2"
53
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ model_id,
56
+ torch_dtype="auto",
57
+ device_map="auto",
58
+ )
59
+
60
+ messages = [
61
+ {"role": "user", "content": "Hello!"},
62
+ {"role": "assistant", "content": "Hello! How can I help you today?"},
63
+ ]
64
+ tokenizer.apply_chat_template(
65
+ messages,
66
+ label="helpsteer",
67
+ tokenize=False,
68
+ add_generation_prompt=True,
69
+ )
70
+ # <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1]
71
+
72
+ input_ids = tokenizer.apply_chat_template(
73
+ messages,
74
+ label="helpsteer",
75
+ add_generation_prompt=True,
76
+ return_tensors="pt",
77
+ ).to(model.device)
78
+ outputs = model.generate(input_ids, max_new_tokens=32)
79
+ tokenizer.decode(outputs[0][input_ids.shape[-1]:])
80
+ # helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>
81
+
82
+ messages += [
83
+ {"role": "label", "content": "helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1"},
84
+ {"role": "user", "content": "Thank you!"},
85
+ {"role": "assistant", "content": "You're welcome! I'm happy to help however I can."},
86
+ ]
87
+ tokenizer.apply_chat_template(
88
+ messages,
89
+ label="helpsteer",
90
+ tokenize=False,
91
+ add_generation_prompt=True,
92
+ )
93
+ # <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1] helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>[INST] Thank you! [/INST] You're welcome! I'm happy to help however I can. [ATTR_1]
94
+
95
+ messages = [
96
+ {"role": "user", "content": "Hello!"},
97
+ {"role": "assistant", "content": "Hello! How can I help you today?"},
98
+ ]
99
+ tokenizer.apply_chat_template(
100
+ messages,
101
+ label="oasst",
102
+ tokenize=False,
103
+ add_generation_prompt=True,
104
+ )
105
+ # <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_2]
106
+
107
+ input_ids = tokenizer.apply_chat_template(
108
+ messages,
109
+ label="oasst",
110
+ add_generation_prompt=True,
111
+ return_tensors="pt",
112
+ ).to(model.device)
113
+ outputs = model.generate(input_ids, max_new_tokens=32)
114
+ tokenizer.decode(outputs[0][input_ids.shape[-1]:])
115
+ # quality: 3 toxicity: 1 humor: 1 creativity: 1 [/ATTR_2]<eos>
116
+ ```
117
 
118
  ## Training Details
119
 
120
  ### Training Data
121
 
122
+ - [OASST2](https://huggingface.co/datasets/OpenAssistant/oasst2)
123
+ - [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
+ ### Training Infrastructure
126
 
127
+ - **Hardware**: The model was trained on single node of an Amazon EC2 trn1.32xlarge instance.
128
+ - **Software**: We use code based on [neuronx-nemo-megatron](https://github.com/aws-neuron/neuronx-nemo-megatron).
129
 
130
+ ## Citation
131
 
132
+ ```
133
+ @misc{karakuri_lm_7b_apm_v01,
134
+ author = { {KARAKURI} {I}nc. },
135
+ title = { {KARAKURI} {LM} 7{B} {APM} v0.2 },
136
+ year = { 2024 },
137
+ url = { https://huggingface.co/karakuri-ai/karakuri-lm-7b-apm-v0.2 },
138
+ publisher = { Hugging Face },
139
+ journal = { Hugging Face repository }
140
+ }
141
+ ```