ynakashima
commited on
Commit
•
69b4bb1
1
Parent(s):
996bcd4
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,141 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- OpenAssistant/oasst2
|
6 |
+
- nvidia/HelpSteer
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
- ja
|
10 |
+
tags:
|
11 |
+
- mistral
|
12 |
+
- steerlm
|
13 |
+
base_model: mistral-community/Mistral-7B-v0.2
|
14 |
---
|
15 |
|
16 |
+
# KARAKURI LM 7B APM v0.2
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model Details
|
19 |
|
20 |
### Model Description
|
21 |
|
22 |
+
- **Developed by:** [KARAKURI Inc.](https://about.karakuri.ai/)
|
23 |
+
- **Model type:** Causal decoder-only transformer language model
|
24 |
+
- **Languages**: Primarily English
|
25 |
+
- **License:** Apache 2.0
|
26 |
+
- **Finetuned from model:** [mistral-community/Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2)
|
27 |
+
- **Contact**: For questions and comments about the model, please email `karakuri-rd@karakuri.ai`
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
KARAKURI LM 7B APM v0.2 is a attribute prediction model that rates model responses on various aspects that makes a response desirable.
|
32 |
+
|
33 |
+
Given a conversation with multiple turns between user and assistant, the model rates the following attributes (between 0 and 4) for every assistant turn.
|
34 |
+
|
35 |
+
- helpfulness: Overall helpfulness of the response to the prompt.
|
36 |
+
- correctness: Inclusion of all pertinent facts without errors.
|
37 |
+
- coherence: Consistency and clarity of expression.
|
38 |
+
- complexity: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
|
39 |
+
- verbosity: Amount of detail included in the response, relative to what is asked for in the prompt.
|
40 |
+
- quality: Perceived goodness of response.
|
41 |
+
- toxicity: Undesirable elements such as vulgar, harmful or potentially biased response.
|
42 |
+
- humor: Sense of humor within response.
|
43 |
+
- creativity: Willingness to generate non-conventional response.
|
44 |
+
|
45 |
+
The first five are derived from HelpSteer, while the remaining four are derived from OASST2.
|
46 |
+
|
47 |
+
You can run the model using the 🤗 Transformers:
|
48 |
+
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
+
|
52 |
+
model_id = "karakuri-ai/karakuri-lm-7b-apm-v0.2"
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_id,
|
56 |
+
torch_dtype="auto",
|
57 |
+
device_map="auto",
|
58 |
+
)
|
59 |
+
|
60 |
+
messages = [
|
61 |
+
{"role": "user", "content": "Hello!"},
|
62 |
+
{"role": "assistant", "content": "Hello! How can I help you today?"},
|
63 |
+
]
|
64 |
+
tokenizer.apply_chat_template(
|
65 |
+
messages,
|
66 |
+
label="helpsteer",
|
67 |
+
tokenize=False,
|
68 |
+
add_generation_prompt=True,
|
69 |
+
)
|
70 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1]
|
71 |
+
|
72 |
+
input_ids = tokenizer.apply_chat_template(
|
73 |
+
messages,
|
74 |
+
label="helpsteer",
|
75 |
+
add_generation_prompt=True,
|
76 |
+
return_tensors="pt",
|
77 |
+
).to(model.device)
|
78 |
+
outputs = model.generate(input_ids, max_new_tokens=32)
|
79 |
+
tokenizer.decode(outputs[0][input_ids.shape[-1]:])
|
80 |
+
# helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>
|
81 |
+
|
82 |
+
messages += [
|
83 |
+
{"role": "label", "content": "helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1"},
|
84 |
+
{"role": "user", "content": "Thank you!"},
|
85 |
+
{"role": "assistant", "content": "You're welcome! I'm happy to help however I can."},
|
86 |
+
]
|
87 |
+
tokenizer.apply_chat_template(
|
88 |
+
messages,
|
89 |
+
label="helpsteer",
|
90 |
+
tokenize=False,
|
91 |
+
add_generation_prompt=True,
|
92 |
+
)
|
93 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_1] helpfulness: 2 correctness: 1 coherence: 2 complexity: 1 verbosity: 1 [/ATTR_1]<eos>[INST] Thank you! [/INST] You're welcome! I'm happy to help however I can. [ATTR_1]
|
94 |
+
|
95 |
+
messages = [
|
96 |
+
{"role": "user", "content": "Hello!"},
|
97 |
+
{"role": "assistant", "content": "Hello! How can I help you today?"},
|
98 |
+
]
|
99 |
+
tokenizer.apply_chat_template(
|
100 |
+
messages,
|
101 |
+
label="oasst",
|
102 |
+
tokenize=False,
|
103 |
+
add_generation_prompt=True,
|
104 |
+
)
|
105 |
+
# <bos>[INST] Hello! [/INST] Hello! How can I help you today? [ATTR_2]
|
106 |
+
|
107 |
+
input_ids = tokenizer.apply_chat_template(
|
108 |
+
messages,
|
109 |
+
label="oasst",
|
110 |
+
add_generation_prompt=True,
|
111 |
+
return_tensors="pt",
|
112 |
+
).to(model.device)
|
113 |
+
outputs = model.generate(input_ids, max_new_tokens=32)
|
114 |
+
tokenizer.decode(outputs[0][input_ids.shape[-1]:])
|
115 |
+
# quality: 3 toxicity: 1 humor: 1 creativity: 1 [/ATTR_2]<eos>
|
116 |
+
```
|
117 |
|
118 |
## Training Details
|
119 |
|
120 |
### Training Data
|
121 |
|
122 |
+
- [OASST2](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
123 |
+
- [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
### Training Infrastructure
|
126 |
|
127 |
+
- **Hardware**: The model was trained on single node of an Amazon EC2 trn1.32xlarge instance.
|
128 |
+
- **Software**: We use code based on [neuronx-nemo-megatron](https://github.com/aws-neuron/neuronx-nemo-megatron).
|
129 |
|
130 |
+
## Citation
|
131 |
|
132 |
+
```
|
133 |
+
@misc{karakuri_lm_7b_apm_v01,
|
134 |
+
author = { {KARAKURI} {I}nc. },
|
135 |
+
title = { {KARAKURI} {LM} 7{B} {APM} v0.2 },
|
136 |
+
year = { 2024 },
|
137 |
+
url = { https://huggingface.co/karakuri-ai/karakuri-lm-7b-apm-v0.2 },
|
138 |
+
publisher = { Hugging Face },
|
139 |
+
journal = { Hugging Face repository }
|
140 |
+
}
|
141 |
+
```
|