|
--- |
|
license: apache-2.0 |
|
tags: |
|
- kandinsky |
|
--- |
|
|
|
# Kandinsky 2.1 |
|
|
|
Kandinsky 2.1 inherits best practices from Dall-E 2 and Latent diffusion while introducing some new ideas. |
|
|
|
It uses the CLIP model as a text and image encoder, and diffusion image prior (mapping) between latent spaces of CLIP modalities. This approach increases the visual performance of the model and unveils new horizons in blending images and text-guided image manipulation. |
|
|
|
The Kandinsky model is created by [Arseniy Shakhmatov](https://github.com/cene555), [Anton Razzhigaev](https://github.com/razzant), [Aleksandr Nikolich](https://github.com/AlexWortega), [Igor Pavlov](https://github.com/boomb0om), [Andrey Kuznetsov](https://github.com/kuznetsoffandrey) and [Denis Dimitrov](https://github.com/denndimitrov) |
|
|
|
## Usage |
|
|
|
Kandinsky 2.1 is available in diffusers! |
|
|
|
```python |
|
pip install diffusers transformers |
|
``` |
|
### Text to image |
|
|
|
```python |
|
from diffusers import AutoPipelineForText2Image |
|
import torch |
|
|
|
pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = "A alien cheeseburger creature eating itself, claymation, cinematic, moody lighting" |
|
negative_prompt = "low quality, bad quality" |
|
|
|
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prior_guidance_scale =1.0, height=768, width=768).images[0] |
|
image.save("cheeseburger_monster.png") |
|
``` |
|
|
|
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/cheeseburger.png) |
|
|
|
|
|
### Text Guided Image-to-Image Generation |
|
|
|
```python |
|
from diffusers import AutoPipelineForImage2Image |
|
import torch |
|
import requests |
|
from io import BytesIO |
|
from PIL import Image |
|
import os |
|
|
|
pipe = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) |
|
|
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = "A fantasy landscape, Cinematic lighting" |
|
negative_prompt = "low quality, bad quality" |
|
|
|
url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" |
|
|
|
response = requests.get(url) |
|
original_image = Image.open(BytesIO(response.content)).convert("RGB") |
|
original_image.thumbnail((768, 768)) |
|
|
|
image = pipe(prompt=prompt, image=original_image, strength=0.3).images[0] |
|
out.images[0].save("fantasy_land.png") |
|
``` |
|
|
|
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/img2img_fantasyland.png) |
|
|
|
|
|
### Text Guided Inpainting Generation |
|
|
|
```python |
|
from diffusers import AutoPipelineForInpainting |
|
from diffusers.utils import load_image |
|
import torch |
|
import numpy as np |
|
|
|
pipe = AutoPipelineForInpainting.from_pretrained("kandinsky-community/kandinsky-2-1-inpaint", torch_dtype=torch.float16) |
|
pipe.enable_model_cpu_offload() |
|
|
|
prompt = "a hat" |
|
negative_prompt = "low quality, bad quality" |
|
|
|
original_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" |
|
) |
|
|
|
mask = np.zeros((768, 768), dtype=np.float32) |
|
# Let's mask out an area above the cat's head |
|
mask[:250, 250:-250] = 1 |
|
|
|
|
|
image = pipe(prompt=prompt, image=original_image, mask_image=mask).images[0] |
|
image.save("cat_with_hat.png") |
|
``` |
|
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/inpaint_cat_hat.png) |
|
|
|
__<font color=red>Breaking change on the mask input:</font>__ |
|
|
|
We introduced a breaking change for Kandinsky inpainting pipeline in the following pull request: https://github.com/huggingface/diffusers/pull/4207. Previously we accepted a mask format where black pixels represent the masked-out area. We have changed to use white pixels to represent masks instead in order to have a unified mask format across all our pipelines. |
|
Please upgrade your inpainting code to follow the above. If you are using Kandinsky Inpaint in production. You now need to change the mask to: |
|
|
|
```python |
|
# For PIL input |
|
import PIL.ImageOps |
|
mask = PIL.ImageOps.invert(mask) |
|
|
|
# For PyTorch and Numpy input |
|
mask = 1 - mask |
|
``` |
|
|
|
|
|
### Interpolate |
|
|
|
```python |
|
from diffusers import KandinskyPriorPipeline, KandinskyPipeline |
|
from diffusers.utils import load_image |
|
import PIL |
|
|
|
import torch |
|
|
|
pipe_prior = KandinskyPriorPipeline.from_pretrained( |
|
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 |
|
) |
|
pipe_prior.to("cuda") |
|
|
|
img1 = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" |
|
) |
|
|
|
img2 = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/starry_night.jpeg" |
|
) |
|
|
|
# add all the conditions we want to interpolate, can be either text or image |
|
images_texts = ["a cat", img1, img2] |
|
|
|
# specify the weights for each condition in images_texts |
|
weights = [0.3, 0.3, 0.4] |
|
|
|
# We can leave the prompt empty |
|
prompt = "" |
|
prior_out = pipe_prior.interpolate(images_texts, weights) |
|
|
|
pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
|
|
image = pipe(prompt, **prior_out, height=768, width=768).images[0] |
|
|
|
image.save("starry_cat.png") |
|
``` |
|
![img](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/kandinsky-docs/starry_cat.png) |
|
|
|
|
|
## Model Architecture |
|
|
|
### Overview |
|
Kandinsky 2.1 is a text-conditional diffusion model based on unCLIP and latent diffusion, composed of a transformer-based image prior model, a unet diffusion model, and a decoder. |
|
|
|
The model architectures are illustrated in the figure below - the chart on the left describes the process to train the image prior model, the figure in the center is the text-to-image generation process, and the figure on the right is image interpolation. |
|
|
|
<p float="left"> |
|
<img src="https://raw.githubusercontent.com/ai-forever/Kandinsky-2/main/content/kandinsky21.png"/> |
|
</p> |
|
|
|
Specifically, the image prior model was trained on CLIP text and image embeddings generated with a pre-trained [mCLIP model](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14). The trained image prior model is then used to generate mCLIP image embeddings for input text prompts. Both the input text prompts and its mCLIP image embeddings are used in the diffusion process. A [MoVQGAN](https://openreview.net/forum?id=Qb-AoSw4Jnm) model acts as the final block of the model, which decodes the latent representation into an actual image. |
|
|
|
|
|
### Details |
|
The image prior training of the model was performed on the [LAION Improved Aesthetics dataset](https://huggingface.co/datasets/bhargavsdesai/laion_improved_aesthetics_6.5plus_with_images), and then fine-tuning was performed on the [LAION HighRes data](https://huggingface.co/datasets/laion/laion-high-resolution). |
|
|
|
The main Text2Image diffusion model was trained on the basis of 170M text-image pairs from the [LAION HighRes dataset](https://huggingface.co/datasets/laion/laion-high-resolution) (an important condition was the presence of images with a resolution of at least 768x768). The use of 170M pairs is due to the fact that we kept the UNet diffusion block from Kandinsky 2.0, which allowed us not to train it from scratch. Further, at the stage of fine-tuning, a dataset of 2M very high-quality high-resolution images with descriptions (COYO, anime, landmarks_russia, and a number of others) was used separately collected from open sources. |
|
|
|
|
|
### Evaluation |
|
We quantitatively measure the performance of Kandinsky 2.1 on the COCO_30k dataset, in zero-shot mode. The table below presents FID. |
|
|
|
FID metric values for generative models on COCO_30k |
|
| | FID (30k)| |
|
|:------|----:| |
|
| eDiff-I (2022) | 6.95 | |
|
| Image (2022) | 7.27 | |
|
| Kandinsky 2.1 (2023) | 8.21| |
|
| Stable Diffusion 2.1 (2022) | 8.59 | |
|
| GigaGAN, 512x512 (2023) | 9.09 | |
|
| DALL-E 2 (2022) | 10.39 | |
|
| GLIDE (2022) | 12.24 | |
|
| Kandinsky 1.0 (2022) | 15.40 | |
|
| DALL-E (2021) | 17.89 | |
|
| Kandinsky 2.0 (2022) | 20.00 | |
|
| GLIGEN (2022) | 21.04 | |
|
|
|
For more information, please refer to the upcoming technical report. |
|
|
|
## BibTex |
|
If you find this repository useful in your research, please cite: |
|
``` |
|
@misc{kandinsky 2.1, |
|
title = {kandinsky 2.1}, |
|
author = {Arseniy Shakhmatov, Anton Razzhigaev, Aleksandr Nikolich, Vladimir Arkhipkin, Igor Pavlov, Andrey Kuznetsov, Denis Dimitrov}, |
|
year = {2023}, |
|
howpublished = {}, |
|
} |
|
``` |