|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlnet-large-cased-ner-food-combined-v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlnet-large-cased-ner-food-combined-v2 |
|
|
|
This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1884 |
|
- Precision: 0.8153 |
|
- Recall: 0.8947 |
|
- F1: 0.8531 |
|
- Accuracy: 0.9729 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.45 | 400 | 0.1389 | 0.7251 | 0.8609 | 0.7872 | 0.9622 | |
|
| 0.2073 | 0.9 | 800 | 0.1628 | 0.8309 | 0.8797 | 0.8546 | 0.9747 | |
|
| 0.157 | 1.35 | 1200 | 0.1346 | 0.7899 | 0.8888 | 0.8364 | 0.9710 | |
|
| 0.1362 | 1.8 | 1600 | 0.1191 | 0.7340 | 0.8880 | 0.8037 | 0.9633 | |
|
| 0.1356 | 2.25 | 2000 | 0.1253 | 0.6966 | 0.8888 | 0.7810 | 0.9570 | |
|
| 0.1356 | 2.7 | 2400 | 0.1194 | 0.7556 | 0.8855 | 0.8154 | 0.9659 | |
|
| 0.1175 | 3.15 | 2800 | 0.1546 | 0.8378 | 0.8880 | 0.8622 | 0.9754 | |
|
| 0.1064 | 3.6 | 3200 | 0.1342 | 0.7955 | 0.8909 | 0.8405 | 0.9711 | |
|
| 0.1116 | 4.04 | 3600 | 0.1314 | 0.7981 | 0.8984 | 0.8453 | 0.9713 | |
|
| 0.0981 | 4.49 | 4000 | 0.1433 | 0.8059 | 0.8834 | 0.8429 | 0.9717 | |
|
| 0.0981 | 4.94 | 4400 | 0.1439 | 0.8051 | 0.9026 | 0.8510 | 0.9719 | |
|
| 0.0936 | 5.39 | 4800 | 0.1661 | 0.8180 | 0.8943 | 0.8544 | 0.9735 | |
|
| 0.082 | 5.84 | 5200 | 0.1558 | 0.8179 | 0.8843 | 0.8498 | 0.9727 | |
|
| 0.084 | 6.29 | 5600 | 0.1553 | 0.7918 | 0.8930 | 0.8394 | 0.9699 | |
|
| 0.0782 | 6.74 | 6000 | 0.1457 | 0.7817 | 0.8943 | 0.8342 | 0.9684 | |
|
| 0.0782 | 7.19 | 6400 | 0.1793 | 0.8134 | 0.8913 | 0.8506 | 0.9726 | |
|
| 0.0694 | 7.64 | 6800 | 0.1638 | 0.7974 | 0.8930 | 0.8425 | 0.9707 | |
|
| 0.0757 | 8.09 | 7200 | 0.1690 | 0.8042 | 0.8976 | 0.8483 | 0.9714 | |
|
| 0.0665 | 8.54 | 7600 | 0.1813 | 0.8110 | 0.8951 | 0.8510 | 0.9724 | |
|
| 0.0607 | 8.99 | 8000 | 0.1907 | 0.8226 | 0.8938 | 0.8567 | 0.9738 | |
|
| 0.0607 | 9.44 | 8400 | 0.1848 | 0.8062 | 0.8938 | 0.8478 | 0.9719 | |
|
| 0.0649 | 9.89 | 8800 | 0.1884 | 0.8153 | 0.8947 | 0.8531 | 0.9729 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|