Kareem Amr commited on
Commit
3a8cf4c
·
verified ·
1 Parent(s): 118bff1

End of training

Browse files
Files changed (2) hide show
  1. README.md +154 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: meta-llama/Meta-Llama-3-8B
8
+ model-index:
9
+ - name: llama-3-8b_dolly_lora
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.0`
20
+ ```yaml
21
+ base_model: meta-llama/Meta-Llama-3-8B
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ load_in_8bit: true
26
+ load_in_4bit: false
27
+ strict: false
28
+
29
+ datasets:
30
+ - path: kareemamrr/databricks-dolly-15k-alpaca
31
+ type: alpaca
32
+ dataset_prepared_path:
33
+ val_set_size: 0.05
34
+ output_dir: ./outputs/lora-out
35
+
36
+ sequence_len: 4096
37
+ sample_packing: true
38
+ pad_to_sequence_len: true
39
+
40
+ adapter: lora
41
+ lora_model_dir:
42
+ lora_r: 32
43
+ lora_alpha: 16
44
+ lora_dropout: 0.05
45
+ lora_target_linear: true
46
+ lora_fan_in_fan_out:
47
+
48
+ wandb_project: llama-3-8b-dolly-axolotl
49
+ wandb_entity: kamr54
50
+
51
+ hub_model_id: kareemamrr/llama-3-8b_dolly_lora
52
+
53
+ gradient_accumulation_steps: 4
54
+ micro_batch_size: 2
55
+ num_epochs: 4
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+ s2_attention:
74
+
75
+ warmup_steps: 10
76
+ evals_per_epoch: 4
77
+ eval_table_size:
78
+ eval_max_new_tokens: 128
79
+ saves_per_epoch: 1
80
+ debug:
81
+ deepspeed:
82
+ weight_decay: 0.0
83
+ fsdp:
84
+ fsdp_config:
85
+ special_tokens:
86
+ pad_token: <|end_of_text|>
87
+
88
+ ```
89
+
90
+ </details><br>
91
+
92
+ # llama-3-8b_dolly_lora
93
+
94
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
95
+ It achieves the following results on the evaluation set:
96
+ - Loss: 1.5906
97
+
98
+ ## Model description
99
+
100
+ More information needed
101
+
102
+ ## Intended uses & limitations
103
+
104
+ More information needed
105
+
106
+ ## Training and evaluation data
107
+
108
+ More information needed
109
+
110
+ ## Training procedure
111
+
112
+ ### Training hyperparameters
113
+
114
+ The following hyperparameters were used during training:
115
+ - learning_rate: 0.0002
116
+ - train_batch_size: 2
117
+ - eval_batch_size: 2
118
+ - seed: 42
119
+ - gradient_accumulation_steps: 4
120
+ - total_train_batch_size: 8
121
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
122
+ - lr_scheduler_type: cosine
123
+ - lr_scheduler_warmup_steps: 10
124
+ - num_epochs: 4
125
+
126
+ ### Training results
127
+
128
+ | Training Loss | Epoch | Step | Validation Loss |
129
+ |:-------------:|:------:|:----:|:---------------:|
130
+ | 1.6347 | 0.0114 | 1 | 1.6104 |
131
+ | 1.5831 | 0.2507 | 22 | 1.5513 |
132
+ | 1.6087 | 0.5014 | 44 | 1.5421 |
133
+ | 1.3508 | 0.7521 | 66 | 1.5383 |
134
+ | 1.4055 | 1.0028 | 88 | 1.5344 |
135
+ | 1.45 | 1.2279 | 110 | 1.5376 |
136
+ | 1.3131 | 1.4786 | 132 | 1.5385 |
137
+ | 1.1921 | 1.7293 | 154 | 1.5384 |
138
+ | 1.4415 | 1.9801 | 176 | 1.5387 |
139
+ | 1.3818 | 2.2051 | 198 | 1.5586 |
140
+ | 1.3292 | 2.4558 | 220 | 1.5662 |
141
+ | 1.4667 | 2.7066 | 242 | 1.5664 |
142
+ | 1.3002 | 2.9573 | 264 | 1.5660 |
143
+ | 1.3682 | 3.1852 | 286 | 1.5878 |
144
+ | 1.2825 | 3.4359 | 308 | 1.5901 |
145
+ | 1.3347 | 3.6866 | 330 | 1.5906 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - PEFT 0.10.0
151
+ - Transformers 4.40.2
152
+ - Pytorch 2.1.2+cu118
153
+ - Datasets 2.19.1
154
+ - Tokenizers 0.19.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f64568dcd720aa23d6138ebf892807036cdc1411531b5b7aa4b40c2ac22eb989
3
+ size 335706186