kamangir
commited on
Commit
·
183bd3e
1
Parent(s):
9d4d402
validating train - kamangir/bolt#689
Browse files- image_classifier/__init__.py +1 -1
- image_classifier/__main__.py +19 -49
image_classifier/__init__.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
name = "image_classifier"
|
2 |
|
3 |
-
version = "1.1.
|
4 |
|
5 |
description = "fashion-mnist + hugging-face + awesome-bash-cli"
|
|
|
1 |
name = "image_classifier"
|
2 |
|
3 |
+
version = "1.1.44"
|
4 |
|
5 |
description = "fashion-mnist + hugging-face + awesome-bash-cli"
|
image_classifier/__main__.py
CHANGED
@@ -1,26 +1,8 @@
|
|
1 |
import argparse
|
2 |
-
import cv2
|
3 |
-
from functools import reduce
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
-
import os
|
7 |
-
import os.path
|
8 |
-
import tensorflow as tf
|
9 |
-
from tqdm import *
|
10 |
-
import re
|
11 |
-
import time
|
12 |
from . import *
|
13 |
-
from
|
14 |
-
from
|
15 |
from abcli import file
|
16 |
-
from abcli.tasks import host
|
17 |
-
from abcli import graphics
|
18 |
-
from abcli.options import Options
|
19 |
-
from abcli import path
|
20 |
-
from abcli.storage import instance as storage
|
21 |
-
from abcli import string
|
22 |
-
from abcli.plugins import tags
|
23 |
-
|
24 |
import abcli.logging
|
25 |
import logging
|
26 |
|
@@ -136,33 +118,18 @@ args = parser.parse_args()
|
|
136 |
|
137 |
success = False
|
138 |
if args.task == "describe":
|
139 |
-
|
140 |
success = True
|
141 |
elif args.task == "eval":
|
142 |
success = eval(args.input_path, args.output_path)
|
143 |
-
elif args.task == "ingest":
|
144 |
-
success = ingest(
|
145 |
-
args.include,
|
146 |
-
args.output_path,
|
147 |
-
{
|
148 |
-
"count": args.count,
|
149 |
-
"exclude": args.exclude,
|
150 |
-
"negative": args.negative,
|
151 |
-
"non_empty": args.non_empty,
|
152 |
-
"positive": args.positive,
|
153 |
-
"test_size": args.test_size,
|
154 |
-
},
|
155 |
-
)
|
156 |
elif args.task == "predict":
|
157 |
-
classifier =
|
158 |
|
159 |
if classifier.load(args.model_path):
|
160 |
-
success, test_images = file.load(
|
161 |
-
"{}/test_images.pyndarray".format(args.data_path)
|
162 |
-
)
|
163 |
|
164 |
if success:
|
165 |
-
logger.info("test_images: {
|
166 |
|
167 |
_, test_labels = file.load(
|
168 |
"{}/test_labels.pyndarray".format(args.data_path),
|
@@ -172,23 +139,26 @@ elif args.task == "predict":
|
|
172 |
|
173 |
test_images = test_images / 255.0
|
174 |
|
175 |
-
success = classifier.predict(
|
|
|
|
|
|
|
|
|
176 |
elif args.task == "preprocess":
|
177 |
success = preprocess(
|
178 |
args.output_path,
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
"window_size": args.window_size,
|
184 |
-
},
|
185 |
)
|
186 |
elif args.task == "train":
|
187 |
-
|
188 |
-
success = classifier.train(
|
189 |
args.data_path,
|
190 |
args.model_path,
|
191 |
-
|
|
|
|
|
192 |
)
|
193 |
else:
|
194 |
logger.error(f"-{name}: {args.task}: command not found.")
|
|
|
1 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from . import *
|
3 |
+
from .classes import Image_Classifier
|
4 |
+
from .funcs import *
|
5 |
from abcli import file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import abcli.logging
|
7 |
import logging
|
8 |
|
|
|
118 |
|
119 |
success = False
|
120 |
if args.task == "describe":
|
121 |
+
Image_Classifier().load(args.model_path)
|
122 |
success = True
|
123 |
elif args.task == "eval":
|
124 |
success = eval(args.input_path, args.output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
elif args.task == "predict":
|
126 |
+
classifier = Image_Classifier()
|
127 |
|
128 |
if classifier.load(args.model_path):
|
129 |
+
success, test_images = file.load(f"{args.data_path}/test_images.pyndarray")
|
|
|
|
|
130 |
|
131 |
if success:
|
132 |
+
logger.info(f"test_images: {string.pretty_size_of_matrix(test_images)}")
|
133 |
|
134 |
_, test_labels = file.load(
|
135 |
"{}/test_labels.pyndarray".format(args.data_path),
|
|
|
139 |
|
140 |
test_images = test_images / 255.0
|
141 |
|
142 |
+
success = classifier.predict(
|
143 |
+
test_images,
|
144 |
+
test_labels,
|
145 |
+
args.output_path,
|
146 |
+
)
|
147 |
elif args.task == "preprocess":
|
148 |
success = preprocess(
|
149 |
args.output_path,
|
150 |
+
objects=args.objects,
|
151 |
+
infer_annotation=args.infer_annotation,
|
152 |
+
purpose=args.purpose,
|
153 |
+
window_size=args.window_size,
|
|
|
|
|
154 |
)
|
155 |
elif args.task == "train":
|
156 |
+
success = Image_Classifier.train(
|
|
|
157 |
args.data_path,
|
158 |
args.model_path,
|
159 |
+
color=args.color,
|
160 |
+
convnet=args.convnet,
|
161 |
+
epochs=args.epochs,
|
162 |
)
|
163 |
else:
|
164 |
logger.error(f"-{name}: {args.task}: command not found.")
|