lewtun's picture
lewtun HF staff
Add evaluation results on the conll2003 config and test split of conll2003
d3d8068
|
raw
history blame
2.43 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-cased-ner-conll2003
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9438052359513089
          - name: Recall
            type: recall
            value: 0.9525412319084483
          - name: F1
            type: f1
            value: 0.9481531116508919
          - name: Accuracy
            type: accuracy
            value: 0.9910634321093416
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9116307653519484
            verified: true
          - name: Precision
            type: precision
            value: 0.9366103911345081
            verified: true
          - name: Recall
            type: recall
            value: 0.9262526113340186
            verified: true
          - name: F1
            type: f1
            value: 0.9314027058794109
            verified: true
          - name: loss
            type: loss
            value: 0.4366346299648285
            verified: true

bert-base-cased-ner-conll2003

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0355
  • Precision: 0.9438
  • Recall: 0.9525
  • F1: 0.9482
  • Accuracy: 0.9911

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.1.0
  • Tokenizers 0.12.1