kalese's picture
End of training
6b1ea97 verified
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-ro
tags:
  - generated_from_trainer
datasets:
  - arrow
metrics:
  - bleu
model-index:
  - name: opus-mt-en-bkm-Final-37
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: arrow
          type: arrow
          config: default
          split: train
          args: default
        metrics:
          - name: Bleu
            type: bleu
            value: 0.8035

opus-mt-en-bkm-Final-37

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the arrow dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1287
  • Bleu: 0.8035
  • Gen Len: 8.152

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 364 2.7636 1.8891 7.3867
3.6413 2.0 728 2.4732 1.2427 7.7232
2.5061 3.0 1092 2.3356 0.2297 8.558
2.5061 4.0 1456 2.2540 0.4676 8.8199
2.212 5.0 1820 2.2023 0.4941 9.0923
2.0058 6.0 2184 2.1658 0.665 8.627
1.8426 7.0 2548 2.1516 0.7263 8.4051
1.8426 8.0 2912 2.1404 0.7423 8.3173
1.7227 9.0 3276 2.1323 0.7364 8.3373
1.6471 10.0 3640 2.1287 0.8035 8.152

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2