|
--- |
|
library_name: diffusers |
|
base_model: stabilityai/stable-diffusion-xl-base-1.0 |
|
tags: |
|
- text-to-image |
|
license: openrail++ |
|
inference: false |
|
--- |
|
|
|
# What is different about this fork from the original (h1t/oms_b_openclip_xl)? |
|
|
|
The code has been modified to work with the current final version (0.27.2) of diffusers. |
|
The behavior remains the same. Enjoy. |
|
|
|
<img src="kaeru-dev.png" width="600"/> |
|
|
|
```diff |
|
- OMSPipeline.from_pretrained('h1t/oms_b_openclip_xl', ...) |
|
+ OMSPipeline.from_pretrained('kaeru-shigure/oms_b_openclip_xl', ...) |
|
``` |
|
|
|
```diff |
|
--- a/diffusers_patch/models/unet_2d_condition_woct.py |
|
+++ b/diffusers_patch/models/unet_2d_condition_woct.py |
|
@@ -35,7 +35,7 @@ from diffusers.models.embeddings import ( |
|
Timesteps, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
-from diffusers.models.unet_2d_blocks import ( |
|
+from diffusers.models.unets.unet_2d_blocks import ( |
|
CrossAttnDownBlock2D, |
|
CrossAttnUpBlock2D, |
|
DownBlock2D, |
|
@@ -159,6 +159,7 @@ class UNet2DConditionWoCTModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMi |
|
conv_out_kernel: int = 3, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
+ subfolder: Optional[str] = None, |
|
): |
|
super().__init__() |
|
``` |
|
|
|
```diff |
|
--- a/diffusers_patch/pipelines/oms/pipeline_oms.py |
|
+++ b/diffusers_patch/pipelines/oms/pipeline_oms.py |
|
@@ -8,6 +8,7 @@ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokeniz |
|
|
|
from diffusers.loaders import FromSingleFileMixin |
|
|
|
+from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_OFFLINE |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
@@ -17,6 +18,7 @@ from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.pipeline_utils import * |
|
from diffusers.pipelines.pipeline_utils import _get_pipeline_class |
|
+from diffusers.pipelines.pipeline_loading_utils import * |
|
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT |
|
|
|
from diffusers_patch.models.unet_2d_condition_woct import UNet2DConditionWoCTModel |
|
@@ -164,7 +166,8 @@ class OMSPipeline(DiffusionPipeline, FromSingleFileMixin): |
|
sd_pipeline: DiffusionPipeline, |
|
oms_text_encoder:Optional[Union[CLIPTextModel, SDXLTextEncoder]], |
|
oms_tokenizer:Optional[Union[CLIPTokenizer, SDXLTokenizer]], |
|
- sd_scheduler = None |
|
+ sd_scheduler = None, |
|
+ trust_remote_code: bool = False, |
|
): |
|
# assert sd_pipeline is not None |
|
|
|
@@ -279,7 +282,7 @@ class OMSPipeline(DiffusionPipeline, FromSingleFileMixin): |
|
|
|
@classmethod |
|
os.PathLike]], **kwargs): |
|
- cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
+ cache_dir = kwargs.pop("cache_dir", HF_HUB_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
``` |
|
|
|
----- |
|
|
|
# One More Step |
|
|
|
One More Step (OMS) module was proposed in [One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion Schedule Flaws and Enhancing Low-Frequency Controls](https://github.com/mhh0318/OneMoreStep) |
|
by *Minghui Hu, Jianbin Zheng, Chuanxia Zheng, Tat-Jen Cham et al.* |
|
|
|
|
|
By **adding one small step** on the top the sampling process, we can address the issues caused by the current schedule flaws of diffusion models **without changing the original model parameters**. This also allows for some control over low-frequency information, such as color. |
|
|
|
Our model is **versatile** and can be integrated into almost all widely-used Stable Diffusion frameworks. It's compatible with community favorites such as **LoRA, ControlNet, Adapter, and foundational models**. |
|
|
|
|
|
## Usage |
|
|
|
OMS now is supported 🤗 `diffusers` with a customized pipeline [github](https://github.com/mhh0318/OneMoreStep). To run the model (especially with `LCM` variant), first install the latest version of `diffusers` library as well as `accelerate` and `transformers`. |
|
|
|
```bash |
|
pip install --upgrade pip |
|
pip install --upgrade diffusers transformers accelerate |
|
``` |
|
|
|
And then we clone the repo |
|
```bash |
|
git clone https://github.com/mhh0318/OneMoreStep.git |
|
cd OneMoreStep |
|
``` |
|
|
|
|
|
### SDXL |
|
|
|
The OMS module can be loaded with SDXL base model `stabilityai/stable-diffusion-xl-base-1.0`. |
|
And all the SDXL based model and its LoRA can **share the same OMS** `h1t/oms_b_openclip_xl`. |
|
|
|
Here is an example for SDXL with LCM-LoRA. |
|
Firstly import the related packages and choose SDXL based backbone and LoRA: |
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusionXLPipeline, LCMScheduler |
|
|
|
sd_pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", add_watermarker=False).to('cuda') |
|
|
|
sd_scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe.load_lora_weights('latent-consistency/lcm-lora-sdxl', variant="fp16") |
|
``` |
|
|
|
Following import the customized OMS pipeline to wrap the backbone and add OMS for sampling. We have uploaded the `.safetensors` to [HuggingFace Hub](https://huggingface.co/h1t/). There are 2 choices for SDXL backbone currently, one is base OMS module with OpenCLIP text encoder [h1t/oms_b_openclip_xl)](https://huggingface.co/h1t/oms_b_openclip_xl) and the other is large OMS module with two text encoder followed by SDXL architecture [h1t/oms_l_mixclip_xl)](https://huggingface.co/h1t/oms_b_mixclip_xl). |
|
```python |
|
from diffusers_patch import OMSPipeline |
|
|
|
pipe = OMSPipeline.from_pretrained('h1t/oms_b_openclip_xl', sd_pipeline = sd_pipe, torch_dtype=torch.float16, variant="fp16", trust_remote_code=True, sd_scheduler=sd_scheduler) |
|
pipe.to('cuda') |
|
``` |
|
|
|
After setting a random seed, we can easily generate images with the OMS module. |
|
```python |
|
prompt = 'close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux' |
|
generator = torch.Generator(device=pipe.device).manual_seed(1024) |
|
|
|
image = pipe(prompt, guidance_scale=1, num_inference_steps=4, generator=generator) |
|
image['images'][0] |
|
``` |
|
![oms_xl](sdxl_oms.png) |
|
|
|
Or we can offload the OMS module and generate a image only using backbone |
|
```python |
|
image = pipe(prompt, guidance_scale=1, num_inference_steps=4, generator=generator, oms_flag=False) |
|
image['images'][0] |
|
``` |
|
![oms_xl](sdxl_wo_oms.png) |
|
|
|
For more models and more functions like diverse prompt, please refer to [OMS Repo](https://github.com/mhh0318/OneMoreStep). |
|
|
|
|