|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import re |
|
from collections import defaultdict |
|
from pathlib import Path |
|
|
|
import numpy |
|
from safetensors.numpy import safe_open, save_file |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def analyze_lora_layers( |
|
sft_fd: safe_open, |
|
) -> tuple[list[tuple[tuple[str, int], set[str]]], set[str]]: |
|
""" |
|
Analyze the LoRA layers in a SafeTensors file. |
|
|
|
Args: |
|
sft_fd (safe_open): An open SafeTensors file. |
|
|
|
Returns: |
|
A tuple containing: |
|
- A list of tuples, each containing a (section, index) pair and a set of associated keys. |
|
- A set of pass-through keys (non-LoRA layers). |
|
""" |
|
RE_LORA_NAME = re.compile( |
|
r"lora_unet_((?:input|middle|output|down|mid|up)_blocks?)(?:(?:_(\d+))?_attentions)?_(\d+)_.*" |
|
) |
|
|
|
pass_through_keys: set[str] = set() |
|
block2keys: dict[tuple[str, int], set[str]] = defaultdict(set) |
|
|
|
for k in sft_fd.keys(): |
|
m = RE_LORA_NAME.fullmatch(k.replace("_0_1_transformer_blocks_", "_0_")) |
|
if not m: |
|
pass_through_keys.add(k) |
|
continue |
|
section, idx1, idx2 = m.groups() |
|
if idx1 is None: |
|
idx = idx2 |
|
else: |
|
idx = f"{idx1}{idx2}" |
|
|
|
block2keys[(section, idx)].add(k) |
|
|
|
if not block2keys: |
|
raise ValueError( |
|
"No UNet layers found in the LoRA checkpoint (Maybe not a SDXL model?)" |
|
) |
|
block2keys_sorted = sorted((k, sorted(v)) for k, v in block2keys.items()) |
|
|
|
for k in pass_through_keys: |
|
if not "te_" in k and "text_" not in k: |
|
logging.warning( |
|
f"key {k} removed but it doesn't look like a text encoder layer" |
|
) |
|
|
|
def print_layers(layers): |
|
for layer, params in layers.items(): |
|
params = ", ".join(sorted(params)) |
|
dbg(f" - {layer:<70}: {params}") |
|
|
|
if logger.getEffectiveLevel() <= logging.DEBUG: |
|
dbg = logger.debug |
|
for (section, idx), keys in block2keys_sorted: |
|
layers = groupby_layer(keys) |
|
dbg(f"* {section=} {idx=} keys={len(keys)} layers={len(layers)}") |
|
print_layers(layers) |
|
|
|
logger.debug(f" * Pass through: ") |
|
print_layers(groupby_layer(pass_through_keys)) |
|
return block2keys_sorted, pass_through_keys |
|
|
|
|
|
def groupby_layer( |
|
keys, make_empty=set, update=lambda vs, layer_name, param_name: vs.add(param_name) |
|
): |
|
d = defaultdict(make_empty) |
|
for k in keys: |
|
layer, _, param = k.rpartition(".") |
|
vs = d[layer] |
|
update(vs, layer, param) |
|
return d |
|
|
|
|
|
def print_block_layout( |
|
block2keys: list[tuple[tuple[str, int], set[str]]], |
|
weights: list[float] | None = None, |
|
) -> None: |
|
""" |
|
Print the layout of LoRA blocks, optionally with weights. |
|
|
|
Args: |
|
block2keys: A list of tuples, each containing a (section, index) pair and a set of associated keys. |
|
weights: Optional list of weights corresponding to each block. |
|
""" |
|
logger.info("Blocks layout:") |
|
if weights is None: |
|
for i, ((section, idx), keys) in enumerate(block2keys): |
|
logger.info(f"\t[{i:>2d}] {section:>13}.{idx} layers={len(keys):<3}") |
|
section2shortname = { |
|
|
|
"input_blocks": "INP", |
|
"middle_block": "MID", |
|
"output_blocks": "OUT", |
|
|
|
"down_blocks": "INP", |
|
"mid_block": "MID", |
|
"up_blocks": "OUT", |
|
} |
|
vector_string = ",".join( |
|
f"{section2shortname[section]}{idx:>02}" for (section, idx), _ in block2keys |
|
) |
|
logger.info(f'Vector string format: "1,{vector_string}"') |
|
vector_string = ",".join("0" * len(block2keys)) |
|
logger.info(f'Example (drops all blocks): "1,{vector_string}"') |
|
else: |
|
for i, (((section, idx), keys), weight) in enumerate(zip(block2keys, weights)): |
|
if abs(weight) > 1e-6: |
|
if abs(weight - 1) < 1e-6: |
|
weight = 1 |
|
w_disp = f"weight={weight}" |
|
else: |
|
w_disp = "removed" |
|
|
|
layers = len( |
|
groupby_layer(keys, lambda: None, lambda _layers, _layer, _attr: None) |
|
) |
|
logger.info( |
|
f"\t[{i:>2d}] {section:>13}.{idx} keys={len(keys):<3} layers={layers:<3} {w_disp}" |
|
) |
|
|
|
|
|
def filter_blocks(sft_fd: safe_open, vector_string: str) -> dict[str, "numpy.ndarray"]: |
|
""" |
|
Filter LoRA blocks based on a vector string. |
|
|
|
Args: |
|
sft_fd (safe_open): An open SafeTensors file. |
|
vector_string (str): A string representing weights for each block. |
|
|
|
Returns: |
|
A dictionary containing the filtered state dict, or None if an error occurs. |
|
""" |
|
global_weight, *weights_vector = map(float, vector_string.split(",")) |
|
|
|
block2keys, pass_through_keys = analyze_lora_layers(sft_fd) |
|
if len(weights_vector) != len(block2keys): |
|
logger.error(f"expected {len(block2keys)} weights, got {len(weights_vector)}") |
|
print_block_layout(block2keys) |
|
return None |
|
|
|
if logger.getEffectiveLevel() >= logging.INFO: |
|
print_block_layout(block2keys, weights_vector) |
|
|
|
state_dict = {} |
|
for weight, ((s, idx), keys) in zip(weights_vector, block2keys): |
|
weight *= global_weight |
|
if abs(weight) < 1e-6: |
|
logger.debug("reject %s:%s (%s)", s, idx, keys[0]) |
|
continue |
|
|
|
for layer, params in groupby_layer(keys).items(): |
|
logger.debug( |
|
"accept %s:%s (%s) weight=%.2f params=%s", |
|
s, |
|
idx, |
|
layer, |
|
weight, |
|
",".join(params), |
|
) |
|
|
|
if "alpha" in params: |
|
params.remove("alpha") |
|
key = f"{layer}.alpha" |
|
state_dict[key] = sft_fd.get_tensor(key) * weight |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for param in params: |
|
key = f"{layer}.{param}" |
|
state_dict[key] = sft_fd.get_tensor(key) |
|
else: |
|
logging.warning("no alpha parameter in layer %s: %r", layer, params) |
|
for param in params: |
|
key = f"{layer}.{param}" |
|
state_dict[key] = sft_fd.get_tensor(key) |
|
|
|
logger.info( |
|
"Keeping %d keys from the UNet, %d passing through (text encoders)", |
|
len(state_dict), |
|
len(pass_through_keys), |
|
) |
|
for k in pass_through_keys: |
|
state_dict[k] = sft_fd.get_tensor(k) |
|
|
|
return state_dict |
|
|
|
|
|
def setup_logging(verbosity: int) -> None: |
|
""" |
|
Set up logging based on verbosity level and quiet flag. |
|
|
|
Args: |
|
verbosity (int): The verbosity level (0-2). |
|
quiet (bool): If True, suppress all output except errors. |
|
""" |
|
log_levels = [logging.WARNING, logging.INFO, logging.DEBUG] |
|
log_level = log_levels[max(0, min(verbosity, 2))] |
|
logging.basicConfig(level=log_level, format="%(levelname)s: %(message)s") |
|
|
|
|
|
def main() -> None: |
|
""" |
|
Main function to handle CLI arguments and execute the appropriate actions. |
|
""" |
|
parser = argparse.ArgumentParser( |
|
description="Analyze and filter LoRA layers in SafeTensors files." |
|
) |
|
parser.add_argument("input_file", type=Path, help="Input SafeTensors file") |
|
parser.add_argument( |
|
"vector_string", nargs="?", help="Vector string for filtering blocks" |
|
) |
|
parser.add_argument("-o", "--output", type=Path, help="Output file path") |
|
parser.add_argument( |
|
"-v", |
|
"--verbose", |
|
action="count", |
|
default=1, |
|
help="Increase verbosity (can be repeated)", |
|
) |
|
parser.add_argument( |
|
"-q", |
|
"--quiet", |
|
action="count", |
|
default=0, |
|
help="Suppress all output except errors", |
|
) |
|
args = parser.parse_args() |
|
setup_logging(args.verbose - args.quiet) |
|
|
|
with safe_open(args.input_file, framework="np") as sft_fd: |
|
if args.vector_string: |
|
|
|
filtered_state_dict = filter_blocks(sft_fd, args.vector_string) |
|
if filtered_state_dict is None: |
|
logging.error("No lyaers in output!") |
|
exit(1) |
|
|
|
|
|
output_path = args.output or args.input_file.with_stem( |
|
f"{args.input_file.stem}-chop" |
|
) |
|
|
|
metadata = sft_fd.metadata() |
|
metadata["block_vector_string"] = args.vector_string |
|
save_file(filtered_state_dict, output_path, metadata=metadata) |
|
logging.info(f"Filtered LoRA saved to {output_path}") |
|
else: |
|
|
|
block2keys, pass_through_keys = analyze_lora_layers(sft_fd) |
|
print_block_layout(block2keys) |
|
logging.info(f"Pass through layers: {len(pass_through_keys)}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|