metadata
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
metrics:
- bleu
- wer
model-index:
- name: randomization_model_new
results: []
randomization_model_new
This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5870
- Bleu: 0.0001
- Wer: 0.9532
- Rougel: 0.1256
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Wer | Rougel | Gen Len |
---|---|---|---|---|---|---|---|
2.5389 | 0.1 | 100 | 2.1621 | 0.0 | 0.9613 | 0.1062 | 18.9925 |
2.509 | 0.2 | 200 | 2.0311 | 0.0 | 0.9589 | 0.1112 | 19.0 |
2.4189 | 0.3 | 300 | 1.9480 | 0.0 | 0.9577 | 0.1143 | 18.9995 |
2.3174 | 0.4 | 400 | 1.8855 | 0.0001 | 0.9569 | 0.1163 | 19.0 |
2.2219 | 0.5 | 500 | 1.8416 | 0.0001 | 0.956 | 0.118 | 19.0 |
2.1971 | 0.6 | 600 | 1.8083 | 0.0001 | 0.9556 | 0.1193 | 19.0 |
2.1342 | 0.7 | 700 | 1.7758 | 0.0001 | 0.9551 | 0.1207 | 19.0 |
2.179 | 0.8 | 800 | 1.7494 | 0.0001 | 0.955 | 0.121 | 19.0 |
2.0986 | 0.9 | 900 | 1.7289 | 0.0001 | 0.9546 | 0.1219 | 19.0 |
2.0907 | 1.0 | 1000 | 1.7141 | 0.0001 | 0.9542 | 0.1225 | 19.0 |
2.0455 | 1.1 | 1100 | 1.6966 | 0.0001 | 0.9542 | 0.1229 | 19.0 |
2.033 | 1.2 | 1200 | 1.6802 | 0.0001 | 0.954 | 0.1234 | 19.0 |
2.0234 | 1.3 | 1300 | 1.6669 | 0.0001 | 0.9538 | 0.1234 | 19.0 |
2.0025 | 1.4 | 1400 | 1.6557 | 0.0001 | 0.954 | 0.1236 | 19.0 |
2.0098 | 1.5 | 1500 | 1.6467 | 0.0001 | 0.9539 | 0.1236 | 19.0 |
1.9495 | 1.6 | 1600 | 1.6381 | 0.0001 | 0.9539 | 0.1242 | 19.0 |
1.964 | 1.7 | 1700 | 1.6310 | 0.0001 | 0.9537 | 0.1244 | 19.0 |
1.9228 | 1.8 | 1800 | 1.6233 | 0.0001 | 0.9537 | 0.1245 | 19.0 |
1.9449 | 1.9 | 1900 | 1.6184 | 0.0001 | 0.9535 | 0.1248 | 19.0 |
1.9273 | 2.0 | 2000 | 1.6118 | 0.0001 | 0.9536 | 0.1245 | 19.0 |
1.9191 | 2.1 | 2100 | 1.6066 | 0.0001 | 0.9535 | 0.1248 | 19.0 |
1.9337 | 2.2 | 2200 | 1.6031 | 0.0001 | 0.9534 | 0.1251 | 19.0 |
1.9273 | 2.3 | 2300 | 1.5989 | 0.0001 | 0.9535 | 0.1253 | 19.0 |
1.9076 | 2.4 | 2400 | 1.5945 | 0.0001 | 0.9535 | 0.1251 | 19.0 |
1.8714 | 2.5 | 2500 | 1.5939 | 0.0001 | 0.9534 | 0.1253 | 19.0 |
1.9247 | 2.6 | 2600 | 1.5915 | 0.0001 | 0.9533 | 0.1253 | 19.0 |
1.8908 | 2.7 | 2700 | 1.5884 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
1.8858 | 2.8 | 2800 | 1.5875 | 0.0001 | 0.9532 | 0.1254 | 19.0 |
1.9158 | 2.9 | 2900 | 1.5872 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
1.8725 | 3.0 | 3000 | 1.5870 | 0.0001 | 0.9532 | 0.1256 | 19.0 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1