jvalline's picture
Model save
819140d verified
|
raw
history blame
4.05 kB
metadata
license: apache-2.0
base_model: t5-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
model-index:
  - name: randomization_model_new
    results: []

randomization_model_new

This model is a fine-tuned version of t5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5870
  • Bleu: 0.0001
  • Wer: 0.9532
  • Rougel: 0.1256
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Wer Rougel Gen Len
2.5389 0.1 100 2.1621 0.0 0.9613 0.1062 18.9925
2.509 0.2 200 2.0311 0.0 0.9589 0.1112 19.0
2.4189 0.3 300 1.9480 0.0 0.9577 0.1143 18.9995
2.3174 0.4 400 1.8855 0.0001 0.9569 0.1163 19.0
2.2219 0.5 500 1.8416 0.0001 0.956 0.118 19.0
2.1971 0.6 600 1.8083 0.0001 0.9556 0.1193 19.0
2.1342 0.7 700 1.7758 0.0001 0.9551 0.1207 19.0
2.179 0.8 800 1.7494 0.0001 0.955 0.121 19.0
2.0986 0.9 900 1.7289 0.0001 0.9546 0.1219 19.0
2.0907 1.0 1000 1.7141 0.0001 0.9542 0.1225 19.0
2.0455 1.1 1100 1.6966 0.0001 0.9542 0.1229 19.0
2.033 1.2 1200 1.6802 0.0001 0.954 0.1234 19.0
2.0234 1.3 1300 1.6669 0.0001 0.9538 0.1234 19.0
2.0025 1.4 1400 1.6557 0.0001 0.954 0.1236 19.0
2.0098 1.5 1500 1.6467 0.0001 0.9539 0.1236 19.0
1.9495 1.6 1600 1.6381 0.0001 0.9539 0.1242 19.0
1.964 1.7 1700 1.6310 0.0001 0.9537 0.1244 19.0
1.9228 1.8 1800 1.6233 0.0001 0.9537 0.1245 19.0
1.9449 1.9 1900 1.6184 0.0001 0.9535 0.1248 19.0
1.9273 2.0 2000 1.6118 0.0001 0.9536 0.1245 19.0
1.9191 2.1 2100 1.6066 0.0001 0.9535 0.1248 19.0
1.9337 2.2 2200 1.6031 0.0001 0.9534 0.1251 19.0
1.9273 2.3 2300 1.5989 0.0001 0.9535 0.1253 19.0
1.9076 2.4 2400 1.5945 0.0001 0.9535 0.1251 19.0
1.8714 2.5 2500 1.5939 0.0001 0.9534 0.1253 19.0
1.9247 2.6 2600 1.5915 0.0001 0.9533 0.1253 19.0
1.8908 2.7 2700 1.5884 0.0001 0.9532 0.1256 19.0
1.8858 2.8 2800 1.5875 0.0001 0.9532 0.1254 19.0
1.9158 2.9 2900 1.5872 0.0001 0.9532 0.1256 19.0
1.8725 3.0 3000 1.5870 0.0001 0.9532 0.1256 19.0

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1