jvalero's picture
Model save
e537ddf verified
|
raw
history blame
3.08 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: wav2vec2-base-music_genre_classifier-g4-firstseconds
    results: []

wav2vec2-base-music_genre_classifier-g4-firstseconds

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4970
  • Accuracy: 0.8304
  • F1: 0.8244
  • Recall: 0.8262
  • Precision: 0.8260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
1.1447 1.0 2393 1.2684 0.6524 0.6382 0.6533 0.6527
0.7302 2.0 4786 0.8886 0.7458 0.7421 0.7479 0.7637
0.521 3.0 7179 0.8755 0.7701 0.7686 0.7715 0.7934
0.3648 4.0 9572 1.0389 0.7731 0.7723 0.7673 0.7928
0.6132 5.0 11965 1.0694 0.7997 0.7955 0.7943 0.8170
0.6512 6.0 14358 1.2190 0.7886 0.7864 0.7864 0.7984
0.0851 7.0 16751 1.2496 0.8022 0.7959 0.7973 0.8082
0.0881 8.0 19144 1.2582 0.8127 0.8088 0.8105 0.8098
0.1063 9.0 21537 1.4087 0.8148 0.8119 0.8121 0.8176
0.4205 10.0 23930 1.4825 0.8055 0.8001 0.8019 0.8158
0.0478 11.0 26323 1.4240 0.8109 0.8023 0.8031 0.8082
0.0037 12.0 28716 1.3865 0.8248 0.8182 0.8199 0.8202
0.0236 13.0 31109 1.4570 0.8279 0.8230 0.8232 0.8250
0.0094 14.0 33502 1.4892 0.8289 0.8227 0.8248 0.8249
0.0002 15.0 35895 1.4970 0.8304 0.8244 0.8262 0.8260

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3