jvalero's picture
Model save
b821c29 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: wav2vec2-base-music_genre_classifier-g3b
    results: []

wav2vec2-base-music_genre_classifier-g3b

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3709
  • Accuracy: 0.7380
  • F1: 0.7356
  • Recall: 0.7395
  • Precision: 0.7400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
2.3444 1.0 276 2.2888 0.3618 0.2663 0.3495 0.2702
1.946 2.0 552 1.7679 0.4880 0.4277 0.4778 0.5072
1.6394 3.0 828 1.4655 0.5565 0.4966 0.5463 0.5089
1.2346 4.0 1104 1.3279 0.5974 0.5654 0.5937 0.6372
0.8945 5.0 1380 1.2718 0.6226 0.6021 0.6178 0.6240
0.7872 6.0 1656 1.1310 0.6671 0.6594 0.6691 0.6826
0.5562 7.0 1932 1.1743 0.6743 0.6677 0.6730 0.6857
0.65 8.0 2208 1.0722 0.7163 0.7178 0.7179 0.7394
0.3239 9.0 2484 1.1846 0.6899 0.6863 0.6909 0.6997
0.3885 10.0 2760 1.2243 0.7031 0.6994 0.7072 0.7126
0.1529 11.0 3036 1.2539 0.7175 0.7193 0.7195 0.7245
0.4527 12.0 3312 1.3231 0.7188 0.7116 0.7182 0.7220
0.324 13.0 3588 1.3190 0.7344 0.7360 0.7368 0.7409
0.0277 14.0 3864 1.3623 0.7356 0.7340 0.7370 0.7407
0.0276 15.0 4140 1.3709 0.7380 0.7356 0.7395 0.7400

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3