jumplander commited on
Commit
e146cc4
·
verified ·
1 Parent(s): f2ea56b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -92
README.md CHANGED
@@ -25,135 +25,136 @@ license_link: LICENSE
25
 
26
  ---
27
 
28
- # 🚀 JumpLander Coder 32B
29
- **Advanced Code-Generation LLM — optimized for English & Persian workflows**
30
- 🇮🇷 *چند خط توضیح فارسی:*
31
- این مدل برای توسعه‌دهندگان ایرانی طراحی شده و نسخه آنلاین آن در سایت فعال است.
32
- نسخه‌ی لوکال فقط از طریق نرم‌افزار رسمی JumpLander ارائه خواهد شد.
33
- وزن‌های مدل عمومی نیستند و تنها در قالب نرم‌افزار قابل استفاده می‌باشند.
34
 
35
- ---
 
 
 
36
 
37
- ## 🌟 Overview
38
- JumpLander Coder 32B is a high-performance, bilingual (English–Persian) code-generation LLM built for advanced programming tasks, repository-wide reasoning, and architecture-level understanding.
39
 
40
- This release provides documentation, benchmarks, design goals, and usage guidelines.
41
- **Model weights are not publicly distributed.**
42
- Local access will be provided exclusively through the official JumpLander desktop/server application.
 
 
 
43
 
44
  ---
45
 
46
- ## 📊 Current Status
 
47
 
48
- <img src="https://cdn-uploads.huggingface.co/production/uploads/69204763af796f2f22ad9f49/A8r0WUkLpEhDAh7Z8Xajx.jpeg" width="600"/>
 
 
 
 
49
 
50
- - Documentation available
51
- - ✔ Prototype benchmarks included
52
- - ✔ Online demo available on the website
53
- - ❌ Weights are *not* public
54
- - 🔒 Local model execution will be provided only via official software
55
 
56
  ---
57
 
58
- # 🧪 Benchmarks (Prototype)
 
 
 
 
59
 
60
- | Task | Score | Notes |
61
- |------|-------|--------|
62
- | **HumanEval** | **72%** | Strong execution accuracy |
63
- | **Repo-level Q&A** | High | Stable multi-file reasoning |
64
- | **Persian Instruction Following** | **Excellent** | Optimized bilingual performance |
65
-
66
- ---
67
 
68
- # 📦 Model Comparison (Prototype Benchmarks)
 
 
69
 
70
- | Model | Params | HumanEval | Multi-file Reasoning | Persian Support | Speed (tok/s) | Availability |
71
- |------|--------|-----------|------------------------|------------------|----------------|--------------|
72
- | **JumpLander Coder 32B** | 32B | **72%** | ✔ Strong | **Excellent** | 34 | Local-only via app |
73
- | Qwen2.5-Coder 32B | 32B | 75% | Medium | Weak | 32 | Open-source |
74
- | DeepSeek-Coder 33B | 33B | 79% | Strong | Weak | 29 | Open-source |
75
- | StarCoder2 15B | 15B | 63% | Limited | Weak | **45** | Open-source |
76
- | Llama-3.1 70B | 70B | **82%** | Strong | Weak | 20 | Open-source |
77
 
78
  ---
79
 
80
- # 💡 Why JumpLander Coder 32B?
 
 
 
 
81
 
82
- > ### 🧠 Multi-file reasoning
83
- > Designed for architecture-level understanding and full-repository analysis.
84
 
85
- > ### 🇮🇷 Persian-optimized workflow
86
- > Tuned for real Persian programming scenarios and instruction patterns.
 
87
 
88
- > ### 🛡️ Secure-by-design outputs
89
- > Refactoring logic, patch suggestions, and safe coding guidelines included.
 
90
 
91
- > ### Developer-focused ecosystem
92
- > Future SDK, CLI tools, and integrated analysis modules.
93
 
94
  ---
95
 
96
- ## 🗂 Local Execution (Official Software Only)
 
97
 
98
- Local execution of the model will be provided through the **JumpLander App**, enabling:
 
99
 
100
- - Secure local model loading
101
- - Offline and online operation modes
102
- - Integrated coding environment
103
- - Automatic model updates
104
- - Full repository understanding features
105
 
106
- **Note:**
107
- Weights will *not* be downloadable manually.
108
- They are packaged, encrypted, and tied to the official software.
 
 
109
 
110
  ---
111
 
112
- ## 🎯 Use Cases
 
 
 
 
 
 
 
113
 
114
- - Application scaffolding
115
- - Repository-wide refactoring
116
- - Debugging & architecture inspection
117
- - Documentation and API specification
118
- - Programming education (EN + FA)
119
 
120
  ---
121
 
122
- ## 🛠 Planned Capabilities
123
-
124
- - Repository-wide code generation
125
- - Multi-language support: Python, JS/TS, Go, Rust, Java, C/C++, Bash, SQL
126
- - Long-context reasoning (hundreds of thousands of tokens)
127
- - Test generation: unit, integration, regression
128
- - IDE extensions (VS Code + JetBrains)
129
- - Full SDK + CLI tools
130
-
131
- ---
132
- ## 📎 Contact & Support
133
-
134
- Website: https://jumplander.org
135
-
136
- LinkedIn: https://www.linkedin.com/in/jump-lander-55812b388/
137
-
138
- Support: support@jumplander.org
139
 
140
  ---
141
 
142
- ## 💻 Example Usage (Future API)
143
-
144
- ```python
145
- from jumplander_sdk import JumplanderClient
146
 
147
- client = JumplanderClient(api_key="YOUR_KEY")
148
-
149
- # Scaffold a FastAPI app
150
- project = client.scaffold(
151
- "Create a FastAPI service with JWT and PostgreSQL",
152
- language="python"
153
- )
154
- project.save("./generated_app")
155
 
156
- # Refactor an existing repository
157
- patches = client.refactor("./myrepo", intent="improve structure")
158
- client.apply_patches(patches)
 
159
 
 
 
25
 
26
  ---
27
 
28
+ # 🚀 JumpLander Coder 32B
29
+ **Advanced CodeGeneration LLM — optimized for Persian‑speaking developers**
 
 
 
 
30
 
31
+ **Short summary**
32
+ JumpLander Coder 32B is a high‑performance, bilingual (English–Persian) code generation model optimized for multi‑file reasoning, repository‑scale analysis, and developer workflows. It is designed to assist with scaffolding, refactoring, testing, and documentation generation while emphasizing secure coding patterns and reproducible evaluation.
33
+
34
+ > **Important:** Model weights are distributed **locally** through the JumpLander App (desktop/server installer). The model can also be tried on our website demo with limited free requests for evaluation. We do **not** publish model weights on an open public hosting by default — distribution is controlled via the official JumpLander software to ensure integrity and support.
35
 
36
+ ---
 
37
 
38
+ ## 🌟 Key Features
39
+ - High‑quality, executable code generation and scaffolding
40
+ - Multi‑file and architecture‑level reasoning
41
+ - Secure‑by‑design outputs and automated refactoring suggestions
42
+ - Persian (Farsi) instruction tuning for improved developer UX
43
+ - CLI / SDK integrations and future IDE plugins planned
44
 
45
  ---
46
 
47
+ ## 📦 Local Distribution & How Users Access the Model
48
+ JumpLander distributes model weights to end users via the official JumpLander App (installer) and controlled download endpoints. The purpose of local distribution is to enable offline and private execution, reduce API costs, and give users full runtime control on their machines.
49
 
50
+ Typical flow (once local package is released):
51
+ 1. User installs JumpLander App (desktop or server).
52
+ 2. User downloads model bundle from the official server through the App (signed + checksummed).
53
+ 3. App verifies the integrity (SHA‑256 + PGP) and unpacks the model into a secure local runtime.
54
+ 4. The model runs locally — accessible via App UI, CLI, or local SDK.
55
 
56
+ While the local installer is being finalized, a demo endpoint on the website provides limited testing (e.g., 100 trial requests) so users can evaluate model behavior without installing.
 
 
 
 
57
 
58
  ---
59
 
60
+ ## 🧪 Reproducible Evaluation & Benchmarks
61
+ We publish reproducible evaluation scripts and raw logs so independent researchers can reproduce our reported numbers. Evaluation artifacts include:
62
+ - `scripts/run_humaneval.py` (example)
63
+ - `scripts/run_repo_reasoning.py`
64
+ - Raw logs under `eval_logs/` with seeds and environment notes (CUDA/PyTorch versions)
65
 
66
+ Example command (when you have a local model path):
 
 
 
 
 
 
67
 
68
+ ```bash
69
+ python scripts/run_humaneval.py --model-path /path/to/jumplander-coder-32b --seed 42 --output eval_logs/humaneval.json
70
+ ```
71
 
72
+ Metrics usually reported: pass@k (HumanEval), execution accuracy, latency (tokens/sec), and memory footprint.
 
 
 
 
 
 
73
 
74
  ---
75
 
76
+ ## 🔐 Integrity & Security (how downloads are verified)
77
+ All published model bundles (when distributed) include:
78
+ - `model.safetensors` (preferred safer serialization format)
79
+ - `model.safetensors.sha256` (SHA‑256 checksum)
80
+ - `model.safetensors.sig` (PGP detached signature)
81
 
82
+ Example verification commands (Linux/macOS):
 
83
 
84
+ ```bash
85
+ # Verify checksum
86
+ sha256sum -c model.safetensors.sha256
87
 
88
+ # Verify PGP signature (requires maintainers' public key)
89
+ gpg --verify model.safetensors.sig model.safetensors
90
+ ```
91
 
92
+ A convenience script `verify.sh` is included in this repository to automate the checks before loading the model locally.
 
93
 
94
  ---
95
 
96
+ ## 🛠 Quick example (Local Python loader)
97
+ This example assumes the model files are verified and stored locally. The official App exposes a runtime; this snippet demonstrates the local loader pattern (trusted code only):
98
 
99
+ ```python
100
+ from transformers import AutoTokenizer, AutoModelForCausalLM
101
 
102
+ tokenizer = AutoTokenizer.from_pretrained("/local/models/jumplander-coder-32b")
103
+ model = AutoModelForCausalLM.from_pretrained(
104
+ "/local/models/jumplander-coder-32b",
105
+ trust_remote_code=False # We avoid remote code execution by design
106
+ )
107
 
108
+ prompt = "Create a simple FastAPI server with a single endpoint that returns 'hello'."
109
+ inputs = tokenizer(prompt, return_tensors="pt")
110
+ outputs = model.generate(**inputs, max_new_tokens=256)
111
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
112
+ ```
113
 
114
  ---
115
 
116
+ ## Trust & Transparency — Practical steps we follow
117
+ To increase trust and demonstrate non‑fraudulent operation, JumpLander follows these practices:
118
+ - Official distribution only through JumpLander App and controlled download endpoints.
119
+ - Model bundles published with SHA‑256 checksums and PGP signatures.
120
+ - Reproducible benchmarks and raw logs published in `eval_logs/`.
121
+ - Public team profiles and contact information for accountability.
122
+ - A demo endpoint (limited free requests) so users can validate model behavior before download.
123
+ - Security guidance: run models in isolated environments, avoid `trust_remote_code=True` unless code is reviewed and signed.
124
 
125
+ These steps are what we recommend including on the project page and in the model card to reassure enterprise and technical users.
 
 
 
 
126
 
127
  ---
128
 
129
+ ## 📁 Repository layout (suggested)
130
+ ```
131
+ jumplander-coder-32b/
132
+ ├─ README.md
133
+ ├─ LICENSE
134
+ ├─ models/ # (populated when bundles are released)
135
+ │ ├─ model.safetensors
136
+ │ ├─ model.safetensors.sha256
137
+ │ └─ model.safetensors.sig
138
+ ├─ scripts/
139
+ │ ├─ verify.sh
140
+ │ ├─ run_humaneval.py
141
+ │ └─ run_repo_reasoning.py
142
+ ├─ eval_logs/
143
+ └─ docs/
144
+ ```
 
145
 
146
  ---
147
 
148
+ ## 📝 Contact & Support
149
+ JumpLander Team — https://jumplander.org
150
+ Support: support@jumplander.org
151
+ LinkedIn: https://www.linkedin.com/company/jumplander
152
 
153
+ ---
 
 
 
 
 
 
 
154
 
155
+ ## Short Persian note
156
+ 🇮🇷 **جامپلندر تجربهٔ توسعه برای فارسی‌زبانان.**
157
+ در حال حاضر می‌توانید مدل را از طریق دموی وب سایت امتحان کنید؛ نسخهٔ محلی و نصب از طریق نرم‌افزار JumpLander عرضه خواهد شد.
158
+ برای پشتیبانی و گزارش مشکلات، لطفاً به support@jumplander.org ایمیل بزنید.
159
 
160
+ ---